305603d736 | 3 years ago | |
---|---|---|
.. | ||
01_Einleitung.md | 3 years ago | |
02_Technische Grundlagen.md | 3 years ago | |
03_Konzeption_und_Anfordenugsanalyse.md | 3 years ago | |
04_Testaufbau.md | 3 years ago | |
05_Umsetzung_der_Filteralgorithmen.md | 3 years ago | |
06_Testaufbau_und_Durchführung.md | 3 years ago | |
07_Ergebnisse.md | 3 years ago | |
08_Zusammenfassung_und_Ausblick.md | 3 years ago | |
README.md | 3 years ago | |
acronyms.yaml | 3 years ago | |
defaults.yaml | 3 years ago | |
metadata.yaml | 3 years ago |
README.md
Einleitung
Der Einsatz von Smartphones wird durch die Vielzahl verbauter Sensoren immer umfangreicher. Durch den Zugriff von Software auf die Sensoren, werden nützliche Features umgesetzt. So dient das Smartphone heute als Wasserwage durch den Einsatz des Lagesensors oder wird zu einem Schrittzähler durch den Beschleunigungssensor. Ein besonderes Interesse erhält hierbei die Lokalisierung der Geräte. Sie ermöglicht Anwendungen zur Navigation oder das Steuern von ortsgebundenen Aktionen. Die meisten dieser Anwendungen kommen mit einer geringen Auflösung von wenigen Metern zurecht da eine größere Entfernung zwischen den Orten besteht. Bei der Distanzmessung wird die Strecke, die ein Gerät in Bewegung zurücklegt, erfasst. Findet diese Bewegung in einem engen Rahmen, wie beispielsweise einem Tisch statt, so ist die Auflösung nicht mehr ausreichend. In dieser Arbeit soll daher untersucht werden, wie die Messung auf kleinen Skalen, im Zentimeterbereich, umgesetzt werden kann.
Problemstellung und Motivation
Die Open-Source-Andwendung phyphox®\footnote{https://phyphox.org} ermöglicht es mithilfe der im Smartphone verbauten Sensoren Experimente durch zu führen. Die Applikation wird dabei unter anderem in der Lehre eingesetzt um Physikalische oder Chemische zusammenhänge für die Schüler erlebbar zu machen. Sie ersetzt dabei teils teure Lehrmaterialien, die nicht an jeder Schule verfügbar sind. Dadurch hilft phyphox® bei der Verbesserung und Verbreitung von Bildung [@MI191_2021, ab: 1 h 30 min].
Aktuell fehlt es der Anwendung an einer Möglichkeit, das Smartphone im Raum zu lokalisieren. Durch die Implementierung einer Lokalisierungslösung lässt sich der Umfang der Experimente erweitern. Dabei ist darauf zu achten das die Lösung auf möglichst vielen Smartphones umsetzbar ist, wodurch die Hardwareanforderungen limitiert sind.
Da Bluetooth in allen gängigen Smartphones verfügbar ist, soll dies näher betrachtet werden. Aus der Literaturrecherche geht hervor, das die Abweichung von Bluetooth zur Lokalisierung meist mehrere Meter groß ist. Diese hohe Abweichung ist für die meisten Experimente nicht geeignet. Die Arbeit soll untersuchen ob die Abweichung auf wenige Zentimeter reduziert werden kann um sie für Experimente nutzbar zu machen.
Zielsetzung [draft]
Das Ziel dieser Arbeit liegt in der Entwicklung eines Lösungsansatzes, der die Umsetzung einer Lokalisierung zur Durchführung von Experimenten ermöglicht. Die Lösung soll dabei kostengünstig und möglichst einfach umsetzbar sein.
Der eigene Beitrag liegt darin, ein neuartiges Konzept zu erarbeiten, das die Lokalisierung und Distanzmessung auf kleinen Raum ermöglicht.
Zum Einsatz kommen hierbei sich selbst kalibrierenden Bluetooth-Beacons wodurch die Abweichung auf unter \SI{10}{\percent} sinken soll. und die Filterung der Messdaten eingesetzt werden.
Eine Lokalisierung des Smartphones wird oft zur Navigation eingesetzt. Hierbei kommt es meist nicht auf den letzten Meter bis zum Ziel an. In dieser Arbeit geht es darum, die Genauigkeit der Distanzmessung auf einen eingeschränkten Bereich von rund \SI{2}{\meter} zu verbessern. Dabei sollen verschiedene
Bisherige Lösungen beschäftigen sich überwiegend mit der Indoornavigation. Hier sind die Umwelteinflüsse und Abstände der Referenzpunkte sehr viel Größer.
Das Ziel der Arbeit ist es, die Genauigkeit einer Distanzmessung auf einem eingeschränkten Bereich von rund \SI{2}{\meter} zu erhöhen. Das gewählte Setup soll dabei möglichst einfach umsetzbar sein. Mithilfe einer Beispielimplementierung soll die Genauigkeit dieses Setups untersucht werden. Zur weiteren Verbesserung der Genauigkeit sollen verschiedene Filtermöglichkeiten implementiert werden. Mit einer genauen Distanzmessung lassen sich beispielsweise neue Experimente mit dem Smartphone umsetzen.
Im Smartphone befinden sich mehrere Sensoren, die zur Lokalisierung des Geräts eingesetzt werden können. Da sich die Experimente mit phyphox® meist im Innenraum abspielen, wird GPS für diesen Einsatzzweck nicht betrachtet. Mithilfe von WLAN, Bluetooth, NFC, Magnetometer, Gyroskop, Accelerometer, Kamera und Ultraschall bleiben jedoch viele weitere Möglichkeiten zur Lokalisierung bestehen [@maghdid_comprehensive_2021].
Um eine genaue Distanzmessung durchführen zu können muss die Punktuelle Lokalisation eines Gerätes möglich genau sein.
Die Distanz beschreibt die Länge einer, durch eine dynamische Bewegung zurückgelegten Strecke. Die Entfernung hingegen beschreibt den Abstand zwischen zwei Punkten im Raum. Die Lokalisierung bezeichnet die Position in einem 2D oder 3D Raum.
Aufbau der Arbeit [Draft]
Kapitel \ref{einleitung} gibt eine Motivation und beschreibt das Themenfeld dieser Arbeit. Darüber hinaus wird die Problemstellung beschrieben, der Lösungsansatz dargelegt und eigene Beitrag herausgearbeitet. Im Kapitel \ref{grundlagen} werden die Theoretischen Grundlagen und der stand der Forschung beschrieben. Des weiteren findet eine Eingrenzung des Themenfelds auf bestimmte Methoden zur Lösung des Problems statt.
In Kapitel \ref{implementierung} erfolgt die Auswahl und Entwicklung der Komponenten. Es unterteilt sich in die Verwendete Hardware die zur Umsetzung nötig ist und erläutert deren Einsatzbereich. Dabei wird auf die Umsetzung der Programmierung eingegangen. Im letzten Abschnitt wird auf einzelne Aspekte der Auswertung eingegangen.
Erste Messungen zur Beurteilung des Systems finden sich in Kapitel \ref{versuchsvorbereitung}. Die Messungen bieten einen Einblick in das verwendete System. Hierzu wurden zunächst Messungen im Freien durchgeführt um mögliche Störeinflüsse zu reduzieren. Betrachtet werden verschiedene Positionierungen zwischen den eingesetzten Geräten. Abschließend wird eine Kalibrierung des Systems durchgeführt.
Die Messungen aus Kapitel \ref{versuchsvorbereitung} dienen als Grundlage für das Kaptiel \ref{versuchsaufbau}. In diesem wird beschrieben wie die Anordnung der Geräte im Versuch aussieht. Des weiteren werden die Messpunkte des Versuchs definiert.
In Kapitel \ref{ergebnisse} wird das System anhand von Experimenten bewertet. Sowohl die eingesetzten Methode als auch die verschiedenen Filter werden gegenübergestellt. Zunächst wird betrachtet welchen Einfluss die Kalibrierung auf die Ergebnisse der Messungen hat.
Eine Zusammenfassung der Arbeit findet sich in Kapitel \ref{zusammenfassung}. Hier werden die Ergebnisse nochmal in der Gesamtheit diskutiert und in Bezug auf den Stand der Technik erörtert. Abschließend wird ein Ausblick auf mögliche Verbesserungen und Erweiterungen des Lokalisierungssystems vorgenommen.
Grundlagen
Die Lokalisierung und Distanzmessung ist ein wichtiges Forschungsfeld. Die Anwendungsfälle reichen von der Aufzeichnung der Trainingsstrecke über die Navigation bis hin zur Verfolgung von Objekten. Bei vielen Anwendungsbereichen ist eine Genauigkeit von wenigen Metern ausreichend. Dies ändert sich, wenn man Experimente auf kleineren Maßstäben wie zum Beispiel einem Tisch, durchführen möchte. Hierbei können wenige Zentimeter Abweichung über das Gelingen des Experiments entscheiden.
Im Smartphone befinden sich viele verschiedene Sensoren. Einige davon lassen sich zur Lokalisierung des Geräts einsetzen. Die Open-Source-Anwendung phyphox® bietet die Möglichkeit mit dem Smartphone zu Experimentieren. Hierzu verwendet die Anwendung die im Smartphone verbauten Sensoren. Dabei werden die Rohdaten der Sensoren ausgelesen und aufgezeichnet. Durch die Kombination verschiedener Sensoren oder Parametern wie die Zeit, lassen sich verschiedenste Experimente realisieren. Ein Experiment ermöglicht es beispielsweise die Länge eines Pendels zu bestimmen. Hierzu wird das Smartphone an das Pendel gehängt und unter Einsatz des Beschleunigungssensors die Richtungsänderung erkannt und somit die Pendelfrequenz ermittelt. Aus der Pendelfrequenz lässt sich dann die Länge des Pendels errechnen.
Ein weiteres Beispiel ist die Messung der Geschwindigkeit eines Fahrstuhls mithilfe des Luftdrucksensors. Hierbei wird die Höhenänderung ins Verhältnis zur Zeit gesetzt um die Geschwindigkeit zu ermitteln. Mit Kenntnis der Höhe eines Stockwerks lässt sich die gemessene Höhenänderung auch in die Anzahl an zurückgelegten Stockwerken umrechnen. Jedoch fehlt der Anwendung bisher eine Möglichkeit zur Lokalisierung des Smartphones.
In diesem Kapitel werden die technischen Grundlagen erörtert und eine abschließende Bewertung durchgeführt. Dabei werden die Grundlagen zunächst allgemein betrachtet und in weiteren Kapiteln vertieft.
Distanzmessung
Die Distanzmessung beschreibt im Rahmen dieser Arbeit die Messung der Länge einer zurückgelegten Strecke. Dabei bezeichnet die Strecke den Weg zwischen Start- und Zielpunkt. Die digitale Erfassung einer Strecke basiert auf der Erfassung einzelner Wegpunkte [@Lerch_2006_BOOK, vgl. S. 7-8]. Da zwischen den Wegpunkten keine Informationen vorliegen, wird dieser Zwischenraum als Gerade angenommen. Wie Abbildung \ref{fig:wegpunktcount} verdeutlicht, wird die Streckenabbildung durch die Anzahl an aufgezeichneten Wegpunkten verbessert. Im linken Teil der Abbildung sind nur drei Messpunkte erfasst worden, der ermittelte Weg ergibt nahezu eine Gerade und entspricht nicht dem realen Weg. Im rechten Teil sind 8, gleichmäßig verteilte Messpunkte, der aufgezeichnete Weg entspricht fast dem realen Weg.
Lokalisierung
Zur Bestimmung der einzelnen Wegpunkte ist eine Lokalisierung des Messobjektes erforderlich. Hierbei wird die Position des Objekts im Raum bestimmt. Der Raum kann dabei eindimensional oder mehrdimensional sein [@Strang_2008_BOOK]. Die folgenden Kapitel erörtern verschiedene Verfahren zur Lokalisierung, bei denen die Position des oder der Sender bekannt ist und die Position des Empfängers ermittelt werden soll.
Cell-ID
Zu den einfachsten Methoden der Lokalisierung gehört das \ac{cellid}-Verfahren. Dabei haben alle Sender einen eindeutig zugeordneten \ac{id}. Diese \ac{id} wird vom Sender mit ausgestrahlt. Der Empfangsbereich, in dem ein Sender empfangen werden kann, nennt sich Zelle (engl. Cell). Ein Empfänger, der das Signal empfängt, kann dieses durch die \ac{id} eindeutig einem Sender und dessen Zelle zuordnen [@Strang_2008_BOOK]. Dabei ist die Genauigkeit des Verfahrens im wesentlichen von der Reichweite, also der Größe der jeweiligen Zelle, des Senders abhängig.
Die Lokalisierung kann verbessert werden, wenn sich mehrere Sendezellen überlappen. Abbildung \ref{fig:cellid} rechts zeigt, das in diesem Fall die Position des Empfängers auf die Schnittmenge der Sendezellen begrenzt wird, die vom Empfänger empfangen werden. Der rötlich eingefärbte Bereich kennzeichnet das Areal in dem sich der Empfänger befinden kann. Die rote Begrenzung ist die Sendereichweite des Senders.
Fingerprinting
Das Fingerprinting ist ein Ansatz, der sich die Mehrwegausbreitung (mehr dazu in Abschnitt \ref{messung-fehler}) von Funksignalen zu Nutze macht. Hierbei wird für jeden Empfangsort ein charakteristisches Muster (Fingerabdruck, engl. Fingerprint) aufgezeichnet [@Strang_2008_BOOK]. Dabei gliedert sich dieses Verfahren in zwei Phasen:
- Die Offline-Phase: Hierbei werden passende ortsabhängige Parameter bestimmt, durch die eine eindeutige Identifikation eines Ortes möglich ist. Diese Parameter werden für jeden Ort gemessen und in einer Datenbank mit der Ortsinformation verknüpft gespeichert. Die ortsabhängigen Parameter hängen stark von der Umgebung ab. Bei einer Umgebungsänderung müssen diese Parameter aktualisiert werden.
- Die Online-Phase: Dabei misst der Empfänger den Fingerprint, also den Parameter zur Identifikation, und gleicht diesen mit der Datenbank ab. Dazu werden Mustererkennungsalgorithmen benötigt, welche aus der Datenbank den wahrscheinlichsten Fingerprint ermitteln und damit den wahrscheinlichsten Ort herausgeben.
Triangulation
Die Triangulation basiert auf der Ermittlung des Einfallswinkels der eingehenden Signale. Dieses Verfahren wird auch \ac{aoa} genannt. Die Messung des Einfallswinkels ist mit gerichteten Antennenarrays oder Laufzeitmessungen zwischen mehreren Antennen möglich. Für den einfachen Fall einer Messung kann keine Entfernungsinformation gewonnen werden. Erst die Messungen des Einfallswinkels mehrerer Sender führt zu einem linearen Gleichungssystem, dessen Lösung die Position des Empfängers bestimmt [@Strang_2008_BOOK].
Trilateration
Bei der Lateration handelt es um ein Methode zur Positionsbestimmung bei der die Entfernung zwischen Sender und Empfänger ermittelt wird. Durch die Entfernung zwischen Sender und Empfänger entsteht im zweidimensionalen Bereich ein Kreis um den Sender. Der Empfänger befindet sich dann auf einem Punkt dieser Kreisbahn [@Strang_2008_BOOK]. Um eine eindeutige Position zu ermitteln sind mindestens drei Sender notwendig, weswegen diese Methode auch Trilateration genannt wird. Abbildung \ref{fig:lateration} zeigt das Verfahren: Die Position des Empfängers wurde zur besseren Darstellung nur eingekreist, er befindet sich auf dem Schnittpunkt der drei Kreise innerhalb des gestrichelten schwarzen Kreises. Der Abstand zwischen Sender und Empfänger r
entspricht dem Radius des Kreises um den Sender. Der Empfänger befindet sich auf einem unbestimmten Punkt der Kreislinie. Wird nun ein weiterer Sender hinzugefügt, so definieren die jeweiligen Schnittpunkte der Kreise die mögliche Position des Empfängers. Bei drei Sendern gibt es im optimalen Fall nur einen Schnittpunkt bei dem alle drei Kreislinien aufeinander treffen.
Formel \ref{eq:lgsTrilateration} zeigt das allgemeine lineare Gleichungssystem zur Berechnung der Position p_x
und p_y
bei der Trilateration [@Noertjahyana_2017]. Dabei beschreibt x_i
und y_i
die Position der Sender i=1,2,3
und r_i
den gemessenen Abstand zwischen Sender i
und Empfänger.
\begin{equation}\label{eq:lgsTrilateration} \begin{aligned} r_1^2= (p_x-x_1)^2 + (p_y-y_1)^2 \ r_2^2= (p_x-x_2)^2 + (p_y-y_2)^2 \ r_3^2= (p_x-x_3)^2 + (p_y-y_3)^2 \end{aligned} \end{equation}
Im weiteren werden die Verfahren zur Ermittlung der Entfernung zwischen Sender und Empfänger vorgestellt.
Laufzeitmessung {-}
Die Laufzeitmessung, besser bekannt unter dem englischen Begriff \ac{toa}, beruht auf der Messung der absoluten Signallaufzeit t = t_i - t_0
von einem Sender zum Empfänger. Dabei beschreibt t_i
die Sendezeit und t_0
den Empfangszeitpunkt des Signals. Zur Berechnung der Distanz r
wird die Lichtgeschwindigkeit c
mit der Laufzeit des Signals multipliziert: r = c \cdot t
. Für diese Messung ist eine sehr genaue und zwischen Sender und Empfänger synchronisierte Zeiterfassung notwendig [@Strang_2008_BOOK].
Laufzeitdifferenzmessung {-}
Bei der Laufzeitdifferenzmessung, auch bekannt als \ac{tdoa}, wird die Differenz der Signallaufzeit zweier Sender am Empfänger gemessen. Der Vorteil gegenüber dem \ac{toa}-Verfahren liegt darin, dass keine Zeitsynchronizität zwischen dem Sender und Empfänger hergestellt werden muss. Die Laufzeitdifferenzen zwischen den Signalen zweier Sender entspricht damit der Differenz der Distanz vom Empfänger zu den beiden Sendern [@Strang_2008_BOOK].
Signalstärkemessung {-}
Die Messung der Signalstärke, auch bekannt als \ac{rss} ist ein gängiges Verfahren bei der Lokalisierung mithilfe von Funksystemen [@Chen_2019; @Davidson_2017a; @Ye_2019]. Hierbei wird die Empfangsleistung und damit die Dämpfung des Signals am Empfänger gemessen. Die Signaldämpfung hängt dabei unter anderem von der Distanz zwischen Sender und Empfänger ab. Zur Berechnung der Entfernung ist die Kenntnis über den mathematischen Zusammenhang zwischen Entfernung und Signaldämpfung notwendig. Diese Ausbreitungsmodelle sind für viele Szenarien bekannt [@Strang_2008_BOOK].
Fazit
Im Folgenden sollen die eingangs erwähnten Verfahren zur Lokalisierung hinsichtlich der Fragestellung betrachtet werden. Dabei liegt ein besonderes Augenmerk auf der möglichen Ortsauflösung und dem Aufwand, mit dem das Verfahren umgesetzt werden kann. Tabelle \ref{tab:location} bietet eine Übersicht der Bewertung der einzelnen Verfahren.
Das \ac{cellid}-Verfahren hat eine sehr geringe Ortsauflösung. Auch mit einer hohen Anzahl an Sendern bleibt die ermittelte Position nur ein diffuses Areal anstelle einer punktgenauen Lokalisierung. Der Aufwand der Umsetzung hingegen ist als eher gering einzuschätzen.
Beim Fingerprinting-Verfahren ist die Ortsauflösung unter anderem vom betriebenen Aufwand bei der Einrichtung abhängig. Auch die gewählten Parameter zum Erstellen des Fingerabdrucks und die Beständigkeit der Umgebung haben großen Einfluss auf die Ortsauflösung. Daher muss die Einrichtung bei Veränderungen an der Umgebung erneut durchgeführt werden, was den Aufwand für diese Methode stark erhöht.
Das \acl{aoa}-Verfahren lässt sich nur umsetzen, wenn das Gerät die benötigte Hardware zur Ermittlung des Eintrittswinkel mitbringt. Die Ortsauflösung ist dann jedoch nur von den Messfehlern, beschrieben in Abschnitt \ref{messung-fehler}, abhängig und kann somit zunächst als sehr hoch eingestuft werden. Der Aufwand ist jedoch, passende Hardware vorausgesetzt, relativ gering.
Für die Trilateration stehen mehrere Verfahren zur Auswahl. Diese unterscheiden sich hauptsächlich im Aufwand. Die Ortsauflösung ist, wie schon beim \ac{aoa}-Verfahren, abhängig von den Messfehlern der eingesetzten Verfahren. Dabei wird beim \ac{rss}-Verfahren eine etwas geringere Ortsauflösung angenommen, da die Entfernung aufgrund der Signalstärke nicht nur durch Umwelteinflüsse, sondern auch durch das verwendete Modell beeinflusst wird. Der Aufwand für \ac{toa} und \ac{tdoa} wird mit sehr hoch angenommen, da eine genaue Zeitmessung spezielle Hardware voraussetzt. Diese Hardware ist in Smartphones nicht zu finden.
Verfahren | mögliche Ortsauflösung | Aufwand |
---|---|---|
\ac{cellid} | sehr gering | gering |
Fingerprinting | stark schwankend | sehr hoch |
\acl{aoa} | sehr hoch | gering |
\acl{toa} | sehr hoch | sehr hoch |
\acl{tdoa} | sehr hoch | sehr hoch |
\acl{rss} | hoch | gering |
: Übersicht und Bewertung der Verfahren zur Lokalisierung. \label{tab:location}
Smartphonesensoren
Aktuelle Smartphones besitzen eine Vielzahl von Sensoren, um mit ihrer Umwelt zu interagieren. Viele der Sensoren lassen sich alleine oder in Kombination zur Entfernungsmessung oder Distanzmessung einsetzen [@Subbu_2013; @Chen_2019; @Li_2012; @SosaSesma_2016].
Die Entfernung zu einem Referenzpunkt wie einer Wand, lässt sich zum Beispiel durch den Einsatz eines Sonars messen. Für die Umsetzung kommen das Mikrofon und der Lautsprecher des Smartphones in Frage [@Graham_2015]. In dieser Arbeit geht es jedoch um einen flexibleren Einsatzbereich, bei dem eine Lokalisierung zwingend erforderlich ist.
Zu den bekanntesten Sensoren zur Lokalisierung gehört das \ac{gps}. Hierbei wird mit Hilfe von Satelliten die Position des Smartphones ermittelt. Dies ermöglicht die Ortung außerhalb von Gebäuden mit einer Genauigkeit von wenigen Metern [@Bajaj_2002a]. Da die Messungen jedoch nicht auf den Außenbereich beschränkt sein sollen, wird \ac{gps} nicht näher betrachtet.
Die Innenraum-Lokalisierung und Navigation ist ein Forschungsfeld mit großem Interesse. Viele Arbeiten basieren auf dem vom \ac{ieee} festgelegten Standard IEEE 802.11, besser bekannt als \ac{wifi} [@Chen_2019]. Für den Einsatz von \ac{wifi} zur Lokalisierung muss zunächst eine Karte (siehe Kapitel \ref{fingerprinting}) mit der Funkstärkenverteilung erstellt werden [@Davidson_2017a]. Dies bedeutet einen hohen zeitlichen Aufwand bei der Einrichtung und eine geringe Flexibilität im Einsatz.
Ein weiterer Sensor, der zur Lokalisierung in Innenräumen häufig betrachtet wird, ist Bluetooth. Dieser ist weit verbreitet und kostengünstiger als \ac{wifi} [@Ye_2019]. Des Weiteren wurde mit \ac{ble} ein Standard entwickelt, der sehr stromsparend ist. Im weiteren Verlauf der Arbeit soll Bluetooth näher betrachtet werden.
Bluetooth
Bei Bluetooth handelt es sich um einen Industriestandard, der in den 1990er-Jahren durch die \ac{sig} entwickelt und eingeführt wurde. Die Technologie dient seither zur Datenübertragung zwischen verschiedenen Endgeräten mittels Funktechnik. Die Reichweite hängt maßgeblich von der Umgebung und der Sendeleistung ab und kann zwischen \SI{1}{\meter} und \SI{200}{\meter} betragen. Bluetooth arbeitet im lizenzfreiem \ac{ism} von \SIrange{2,402}{2,480}{\giga\Hz}, wodurch es weltweit zulassungsfrei betrieben werden darf. Im Jahr 2020 wurde Bluetooth in 4 Milliarden verkauften Produkten verbaut [@BluetoothSIG_2021]. Darunter befinden sich Smartphones, Computer, medizinische Geräte sowie Unterhaltungsmedien und vieles mehr. Dies und die Tatsache das die \ac{sig} im Jahr 2021 36.645 Mitglieder aufweist [@BluetoothSIG_2021], lässt schlussfolgern, das Bluetooth ein etablierter Standard für den Austausch von Daten ist.
Bluetooth Low Energy
Mit der Einführung von Bluetooth 4.0 im Juli 2010 wurde \acl{ble} in die Bluetooth Technologie integriert. Dabei ist \ac{ble} zu früheren Bluetooth-Versionen nicht abwärtskompatibel, bietet jedoch einige nützliche Besonderheiten: Ein reduzierter Stromverbrauch und die kurze Aufbauzeit einer Übertragung sind die wesentlichen Vorteile. Geräte wie Smartphones und Tablets unterstützen sowohl das klassische Bluetooth als auch den \acl{ble} Standard. Unterstützt ein Geräte nur den \ac{ble}-Standard, so wird es als Bluetooth Smart-Geräte bezeichnet.
Nach einer Sichtung des Marktes bei verschiedenen Onlinehändlern hat sich herausgestellt, dass die meisten Geräte den 2014 eingeführten Bluetooth-Standard 4.2 oder neuer unterstützen. Im Bluetooth-Standard 5.2 wurden einige Verbesserungen zur Lokalisierung mittels Bluetooth eingeführt: Unter anderem die Ermittlung des \acl{aoa}, was zu einer höheren Genauigkeit bei Entfernungsmessungen führen soll. Geräte mit diesem Standard, der im Dezember 2019 eingeführt wurde, sind zum Zeitpunkt der Arbeit jedoch schwer erhältlich. Da die neuen Standards 5.0, 5.1 und 5.2 abwärtskompatibel sind, wird im weiteren Verlauf Bluetooth 4.2 näher betrachtet.
Durch die stromsparenden Eigenschaften von \ac{ble} wird es häufig auch in kleinen Geräten eingesetzt, welche Daten ohne aktive Verbindung via Bluetooth ausstrahlen. Dieses Ausstrahlen von Daten wird Advertising genannt. Ein Gerät, dass nur Advertising-Pakete aussendet, ein sogenannter Advertiser, wird auch als Beacon bezeichnet. Geräte die nach Advertising-Paketen lauschen und keine Verbindung aufbauen wollen, nennen sich Scanner [@BluetoothSIG_2014, Vol. 1 Part A S. 16].
\ac{ble} teilt sich in 40 physikalische Kanäle von je \SI{2}{\mega\Hz} im \SI{2.4}{\giga\Hz} \ac{ism} auf. Davon sind 37 Kanäle für die Datenübertragung vorgesehen sowie 3 Kanäle für das Advertising reserviert [@BluetoothSIG_2014, Vol. 1 Part A S. 16]. In Abbildung \ref{fig:blechannels} sind die \ac{ble}-Kanäle den drei am häufigsten verwendeten \ac{wifi}-Kanälen 1, 6 und 11 [@Kajita_2016] aus dem gleichen Frequenzband gegenübergestellt. Es ist zu erkennen, dass die Advertising-Kanäle (rot gekennzeichnet) außerhalb dieser \ac{wifi}-Kanäle liegen und somit wenige Störeinflüsse durch \ac{wifi} erwartet werden können.
Ein Advertising-Paket enthält 31 Bytes, die vom Nutzer frei definiert werden können. Dabei wird es jeweils auf allen drei Advertising-Kanälen versendet. Das Senden benötigt dabei weniger als \SI{10}{\milli\second}. Das Sendeintervall kann zwischen \SI{20}{\milli\second} und \SI{10.24}{\second} eingestellt werden. Tabelle \ref{tab:adpackettype} zeigt die Advertising-Pakettypen; bei Typen die keine Verbindung zulassen ist das minimal mögliche Sendeintervall auf \SI{100}{\milli\second} beschränkt [@BluetoothSIG_2014, Vol. 2 Part E S. 968 und Vol. 3 Part C S. 389].
Advertising \ac{pdu} | Maximale adv Datenlänge | Scan Request Erlaubt | Verbindung Erlaubt |
---|---|---|---|
ADV_IND | 31 bytes | ja | ja |
ADV_DIRECT_IND | 6 bytes | nein | ja |
ADV_SCAN_IND | 31 bytes | ja | nein |
ADV_NONCONN_IND | 31 bytes | nein | nein |
: Übersicht über die verschiedenen Pakettypen von Advertising-Paketen. \label{tab:adpackettype}
Entfernungsmessung mit der Signalstärke
Die Bluetooth-Spezifikation sieht die Übertragung der Signalstärke, dem sogenannten \ac{rssi}, vor. Dabei handelt es sich um einen absoluten Wert in \ac{dbm} mit einer festgeschriebenen maximalen Abweichung von \num{\pm 6} \ac{db} [@BluetoothSIG_2014, Vol. 2 Part E S. 806]. Wie in Abschnitt \ref{trilateration} Signalstärkemessung beschrieben, ist durch den \ac{rssi}-Wert eine Entfernungsmessung realisierbar.
Zum Einsatz kommt das long-distance path loss-Modell [@Seybold_2005_BOOK]. Dabei handelt es sich um ein Modell zur Vorhersage von Signalverlusten bei der Verbreitung von Funkwellen. In der Android beacon library [@beacon_library_2021] findet sich Formel \ref{eq:beacondistance} zur Berechnung der Distanz d
. txPower
entspricht dabei der Empfangsstärke auf \SI{1}{\meter} Entfernung und P_{R_{x}}
die Empfangene Signalstärke des Beacon. Die txPower
wird häufig vom Hersteller angegeben und ist somit ein bekannter, fester Wert. Die Konstanten A
, B
und C
sind statistisch ermittelte Werte die für jede Hardwarekombination unterschiedlich sind. In der Android beacon library werden als Standardwerte die, auf das Smartphone Nexus 4 kalibrierten Faktoren eingesetzt: A = 0,89976
, B = 7,7095
und C = 0,111
.
\begin{equation}\label{eq:beacondistance} \begin{aligned} d = A \cdot \left( \cfrac{P_{R_{x}}}{txPower} \right)^{B} + C \end{aligned} \end{equation}
Da die Signalstärke Schwankungen unterliegt, mehr dazu in Abschnitt \ref{messung-fehler}, führt die Messung der Entfernung mit einem festen Wert für txPower
zu größeren Abweichungen. Dies kann nach [@Cho_2015a] durch den Einsatz eines Kalibrierungs-Beacon im Abstand von \SI{1}{\meter} zum zu messenden Beacon optimiert werden. Dabei misst der Kalibrierungs-Beacon die aktuelle Signalstärke und übermittelt diese an den Scanner. Bei der Berechnung der Entfernung wird nun in Formel \ref{eq:beacondistance-scPower} die txPower
durch den aktuell gemessenen \ac{rssi}-Wert auf \SI{1}{\meter}, beschrieben als scPower
, ersetzt.
\begin{equation}\label{eq:beacondistance-scPower} \begin{aligned} d = A \cdot \left( \cfrac{P_{R_{x}}}{scPower} \right)^{B} + C \end{aligned} \end{equation}
Messung, Fehler-Quellen und -Korrekturen
In der Regel ist jede Messung fehlerbehaftet, auch wenn sie präzise durchgeführt wird. Zum Beispiel kann es schon beim Ablesen von Messdaten zu Fehlern kommen, aber auch das Einbringen eines Messgeräts kann die zu messenden Werte in einem System verändern. Aus diesem Grund ist die Beurteilung und Klassifikation von Messfehlern ein wichtiger Teil bei der Betrachtung einer Messkette [@Lerch_2006_BOOK, S. 89]. In den folgenden Abschnitten werden die notwendigen Begriffe zur Beurteilung von Fehlern eingeführt und weiter die Fehlerkorrekturmöglichkeiten betrachtet.
Referenzwert
In der Literatur wird häufig vom wahren Wert einer Messung im Zusammenhang mit der Fehlerbewertung gesprochen. Dieser wahre Wert ist ein Wert ohne Fehler und damit stets unbekannt, da jede Messung fehlerbehaftet ist [@jcgm_2012, Nr. 2.11]. Aus diesem Grund kommt anstelle des wahren Werts der Referenzwert zum Einsatz. Dieser Referenzwert wird mit Hilfe bekannter, möglichst genauer Messmethoden ermittelt. Für die Entfernung sind dies beispielsweise Maßbänder oder digitale Entfernungsmessgeräte. Dabei kommt es sowohl beim Ablesen als auch beim Anhalten des Maßbandes zu Ungenauigkeiten was die Ermittlung des wahren Werts unmöglich macht. In den folgenden Kapiteln und insbesondere in den Formeln wird aus diesem Grund nicht der wahre Wert `sondern der Referenzwert verwendet. Dieser Referenzwert stimmt dabei ungefähr mit dem wahren Wert überein [@jcgm_2012, Nr. 5.18].
Arten von Messfehlern
Messfehler werden in systemische und zufällige Fehler unterschieden:
Systemische Fehler sind vorhersagbar und somit auch korrigierbar. Sie unterteilen sich in statische Messfehler und dynamische Messfehler. Statische Messfehler haben einen konstanten Betrag und ein bestimmtes Vorzeichen, dynamische Messfehler hingegen resultieren in einer zeitliche Veränderung des Messwertes einer Messreihe. Da systemische Fehler prinzipiell korrigierbar sind, sollten sie nach Möglichkeit im ersten Schritt der Messwertverarbeitung berichtigt werden [@Lerch_2006_BOOK, S. 90].
Zufällige Messfehler lassen sich hingegen nicht unmittelbar erfassen. Die Abweichungen vom wahren Wert kann nur in Form von Wahrscheinlichkeitsaussagen beschrieben werden. Um diesen Fehlertyp zu beurteilen, müssen möglichst viele Messungen durchgeführt werden. Dabei ergibt sich eine Normalverteilung nach Gauß. Das Normalverteilungsgesetz für zufällige Fehler ist dabei wie folgt charakterisiert: positive und negative Abweichungen treten gleich häufig auf, die Wahrscheinlichkeit des Auftretens einer Abweichung nimmt mit zunehmender Größe der Abweichung ab [@Lerch_2006_BOOK, S. 91].
Nachfolgend sollen Beispiele für die beiden Fehlerarten genannt und beschrieben werden. Tabelle \ref{tab:error} gibt eine Übersicht über die verschiedenen Fehler.
Beispiele systemische Fehler {-}
- Hindernisse: Wände, Möbel, Pflanzen, Menschen und andere Objekte beeinflussen die Ausbreitung von Funkwellen. Der Einfluss äußert sich in Abschwächung oder Reflektion des Signals. Bei Reflektionen kann es zum mehrfachen Empfang ein und des selben Signals kommen. Dabei hat das Reflektierte Signal meist einen weiteren Weg hinter sich und ist daher schwächer. Die zusätzliche Abschwächung des Signals durch Objekte zwischen Sender und Empfänger, führt zu einem schwächeren Signal am Empfänger und beeinflusst so die Entfernungsmessung mithilfe der Signalstärke.
- Reflektionen: Alle Objekte, speziell Metallische, können Funkwellen Reflektieren. Diese Reflektionen führen zur Mehrfachmessung eines Signals.
- Smartphone-Gehäuse: Wie die Hindernisse wirkt sich auch das Smartphone-Gehäuse sowie die verbauten Sensoren im Smartphone auf die Signalstärke aus. Auch eine Smartphone-Hülle die vom Nutzer angebracht wird, beeinflusst die Signalstärke. Da die meisten Hüllen aus Plastik bestehen, ist dieser Effekt jedoch als gering an zu sehen.
- Antennenanordnung: Sowohl die Orientierung als auch die Position der Antenne beeinflusst die Qualität des empfangen Signals. Liegt die Antenne beispielsweise auf der linken Seite des Smartphones, so werden Signale die von rechts kommen stärker gedämpft, vergleiche hierzu die Abbildung der Empfangscharakteristik in [@Raytac_2021, S. 30 Antenna].
- RSSI Sensor: Die Signalmessung wird durch den Bluetooth Chip durchgeführt. Er nutzt einen 8-bit analog zu digital Wandler um einen Wert zwischen 0 und 255 zu erhalten. Das stärkste Signal wird durch den Wert 255 abgebildet. Bei der Umrechnung dieses Wertes in \ac{dbm} muss für gute Ergebnisse ein angepasster Code verwendet werden. Ob und wie gut diese Anpassung geschieht, hängt allein bei den Herstellern.
- Versuchsaufbau: Auch der Aufbau des Versuchs kann zu Fehlern im System führen. Dieser systemische Fehler kann meist nur durch die Wiederholung der Versuche korrigiert werden.
Beispiele zufälliger Fehler {-}
- Funkrauschen: \ac{ble} verwendet den selben Frequenzbereich wie \ac{wifi} und viele weitere Funktechnologien für den Konsumerbereich. Auch andere Signale von unterschiedlichen Frequenzbereichen strahlen teilweise in diesen Frequenzbereich ein. Dabei kann diese starke Auslastung dazu führen das Pakete nicht Empfangen werden oder die Empfangsstärke beeinflusst wird [@Heilmann_2020_BOOK].
- Bluetooth Channel Rotation: \ac{ble} nutzt drei verschiedene Kanäle, mit unterschiedlichen Frequenzen, für das Advertising. Die Antennen sind jedoch auf eine bestimmte Frequenz optimiert. Daher kommt es zu Abweichungen beim RSSI je nach verwendeten Advertising Kanal [@Paterna_2017]. Dies ist prinzipiell ein systemischer Fehler der Korrigierbar wäre. Unter Android gibt es derzeit jedoch keine Möglichkeit den Kanal aus zu lesen, weswegen der Fehler damit zufällig auftritt.
Fehler | Fehler Art | Ursache |
---|---|---|
Hindernisse | systemisch | physikalisch |
Reflektionen | systemisch | physikalisch |
Smartphone-Gehäuse | systemisch | physikalisch |
Antennenanordnung | systemisch | physikalisch, konstruktiv |
RSSI Sensor | systemisch | Implementierung |
Versuchsaufbau | systemisch | Mensch |
Funkrauschen | zufällig | physikalisch |
Bluetooth Channel Rotation | systemisch/zufällig | Implementierung |
: Übersicht der Fehler, Fehlerarten und Ursache \label{tab:error}
Genauigkeit einer Messung
Die Genauigkeit einer Messung wird durch die Richtigkeit und die Präzision beschrieben. Dabei hat ein Messwert eine hohe Genauigkeit, wenn sowohl eine hohe Richtigkeit, als auch eine hohe Präzision vorliegt.
Die Richtigkeit lässt eine Aussage über die Nähe von Einzelmesswerte zum tatsächlichen Messwert zu. Bei einer guten Richtigkeit stimmen die gemessenen Werte im Mittel mit dem tatsächlichen Messwert nahezu überein. In Formel \ref{eq:richtigkeit} wird die Richtigkeit mathematisch beschrieben. Sie wird dabei durch den Betrag der Differenz aus dem Mittelwert \overline{x}
der gemessenen Werte und dem Referenzwert x_{Ref}
beschrieben.
\begin{equation}\label{eq:richtigkeit} \text{Richtigkeit}=|\overline{x}-x_{Ref}| \end{equation}
Die Präzision beschreibt die Streuung der Messwerte um den Mittelwert. Je näher die Messwerte beieinander liegen, desto höher die Präzision. Die Streuung wird dabei durch zufällige Fehler ausgelöst und kann durch die relative Standardabweichung ausgedrückt werden.
Die Abhängigkeit von Präzision und Richtigkeit wird in Abbildung \ref{fig:genauigkeit} verdeutlicht. Dabei liegt der tatsächliche Wert jeweils im Zentrum der Kreise. Nur das Szenario rechts oben in der Abbildung hat eine hohe Genauigkeit, da es sowohl eine hohe Präzision, als auch eine hohe Richtigkeit aufweist. Alle anderen Szenarien haben eine geringe Genauigkeit, können jedoch eine hohe Präzision oder eine hohe Richtigkeit oder keins von beidem (unten links) aufweisen.
Fehlerbewertung
Eine weitere Kenngröße, die eine Aussage über die Qualität der Messung liefert, ist der Messfehler [@Lerch_2006_BOOK, S. 89]. Er unterteilt sich in einen absoluten und relativen Fehler. Der absolute Fehler F
in Formel \ref{eq:abs-fehler} definiert sich durch die Differenz zwischen dem Meßwert M
und dem Referenzwert R
und gibt Auskunft über die absolute Abweichung zwischen den beiden Werten.
\begin{equation}\label{eq:abs-fehler} F=M-R \end{equation}
Der relative Fehler f
in Formel \ref{eq:rel-fehler} wird in Prozent angegeben und ermittelt sich aus dem absoluten Fehler F
bezogen auf den Referenzwert R
.
\begin{equation}\label{eq:rel-fehler} f=\cfrac{F}{R} \cdot \SI{100}{\percent} \end{equation}
Bei der Lokalisierung ist unter anderem die Beurteilung der Abweichung des gemessenen Punkts zum Referenzpunkt wichtig. Mit Formel \ref{eq:abstand} lässt sich der Abstand d
zwischen der gemessenen Position (M_x,M_y)
und der Referenzposition (R_x,R_y)
ermitteln. d
ist somit die absolute Abweichung der Lokalisierung F_{loc}
. Aus den Formeln \ref{eq:abs-fehler} und \ref{eq:rel-fehler} sowie der Kenntnis über die absolute Abweichung in Formel \ref{eq:abstand} ergibt sich die relative Abweichung f_{loc}
in Formel \ref{eq:loc-fehler}.
\begin{equation}\label{eq:abstand} d=F_{loc}=\sqrt{(M_x-R_x)^2 + (M_y-R_y)^2} \end{equation}
\begin{equation}\label{eq:loc-fehler} f_{loc}=\sqrt{\cfrac{(M_x-R_x)^2 + (M_y-R_y)^2}{R_x^2+R_y^2}} \cdot \SI{100}{\percent} \end{equation}
Kalibrierung
Eine Methode zur Reduzierung von systemischen Fehlern, beschrieben in Abschnitt \ref{arten-von-messfehlern} Systemische Fehler, ist die Kalibrierung. Hierbei werden mehrere Messreihen mit möglichst vielen Messungen angefertigt. Es wird darauf geachtet, dass die äußeren Einflüsse, die auf die Messung einwirken können, weitestgehend eliminiert werden und die Messumgebung stets gleich bleibt. Durch eine hohe Anzahl von Messungen kann der statistische Fehler zusätzlich minimiert werden [@jcgm_2012, Nr. 2.19]. Sollte der Mittelwert der Messung nun nicht mit dem Referenzwert übereinstimmen, so ist diese Abweichung auf ein systemischen Fehler zurückzuführen. Um die Linearität des Fehlers zu beurteilen, müssen mehrere Messreihen mit unterschiedlichen Eingangsvoraussetzungen betrachtet werden. Die Eingangsvoraussetzungen sind vom betrachteten System abhängig, im Fall der Entfernungsmessungen werden Messreihen mit unterschiedlichen Abständen angefertigt. Aus den gewonnenen Daten können so Korrekturfaktoren ermittelt werden, welche den systemischen Fehler reduzieren [@jcgm_2012, Nr. 2.39, Nr. 3.11].
Filter
Die unverarbeiteten Messwerte werden als Rohdaten bezeichnet. Sie sind aufgrund der zuvor beschriebenen Messfehler nicht zur Anzeige geeignet. Zunächst müssen diese Fehler beseitigt werden. Im ersten Schritt werden die systemischen Fehler, beispielsweise durch eine Kalibrierung, minimiert. Im nächsten schritt gilt es die zufälligen Fehler, also Ausreißer und Rauschen, zu detektieren und zu eliminieren. Hierbei kommen verschiedene Filterverfahren zum Einsatz die einzeln oder in Kombination eingesetzt werden können.
Gleitender Mittelwert {-}
Beim gleitenden Mittelwert handelt es sich um ein Methode zur Glättung von Zeitlichen Datenreihen. Er Basiert auf der Annahme, dass sich die zu messende Größe über den Zeitlichen verlauf nicht sprunghaft ändert. Diese Annahme lässt sich auch auf die Entfernungs- und Distanzmessung anwenden, !!!!da eine Sprunghafte Änderung eine unendliche Beschleunigung voraussetzt würde. !!!!
Formel \ref{eq:gleitendME} zeigt die mathematische Umsetzung des gleitenden Mittelwerts m_i
. q
beschreibt dabei die Anzahl an Werten die unmittelbar vor und nach dem aktuellen Messwert x_i
erfasst wurden. Dabei wird zur Ermittlung des arithmetischen Mittelwertes die Wertereihe x_{i-q}, ...., x_{i+q}
betrachtet. Die Größe des Fensters q
ist ein Parameter der zu beginn festgelegt werden muss. Dabei ist zu beachten: Ein kleiner Wert für q
erhöht das Rauschen und ein großer Wert kann dazu führen, dass kleine Änderungen zu stark ausgeglichen und somit nicht erkannt werden können.
\begin{equation}\label{eq:gleitendME} m_i = \frac{1}{2q+1} \sum_{k=i-q}^{i+q} x_k \end{equation}
Bei Zeitlichen Messreihen werden die Messdaten oft nicht in zeitlich konstanten Abständen gemessen. Aus diesem Grund sollte das Fenster q
nicht die feste Anzahl von Messwerten sondern ein Zeitintervall q_t
beschreiben. Somit ergibt sich aus Formel \ref{eq:gleitendME} der auf Zeit basierende gleitende Mittelwert m_{i_t}
in Formel \ref{eq:gleitendTime}. Der Wert A
ist die Anzahl an Datenpunkten die im Zeitfenster i_t-q_t
bis i_t+q_t
in die Messung einbezogen werden. i_t
beschreibt den Zeitpunkt der betrachteten Messung.
\begin{equation}\label{eq:gleitendTime} m_{i_t} = \frac{1}{A} \sum_{k=i_t-q_t}^{i_t+q_t} x_k \end{equation}
Gewichteter Mittelwert {-}
Beim \ac{rssi} handelt es sich um einen Dämpfungsfaktor. In Abschnitt \ac{arten-von-messfehlern} ist beschrieben wodurch dieser Faktor beeinflusst wird. Die Dämpfung eines Signals steigt mit jedem Dämpfenden Einflussfaktors an. Somit kann man die Annahme treffen, dass ein niedriger Dämpfungsfaktor stets näher am wahren Wert ist als ein höherer Dämpfungsfaktor. Um den Einfluss durch die Dämpfung zu minimieren, soll niedrigeren Werten daher ein höheres Gewicht zuteil kommen.
Fazit
- Fehlerkorrektur durch einen Laborähnlichen Aufbau.
- Züfällige Fehler durch Filter XY
Bewertung
Der Anwendung fehlt jedoch, ein Möglichkeit zur Lokalisierung des Smartphones. Dabei ist die Messung auf kleinen Skalen, im Zentimeterbereich wichtig um ein möglichst breites Spektrum an Experimenten zu ermöglichen. Beispiele hierfür sind:
Darstellung des Abstandsgesetz: Das Abstandsgesetz beschreibt den Abfall der Energie von allem was sich Kugelförmig ausbreitet, als Beispiel sei hier der Schall oder das Licht genannt. Die Oberfläche einer Kugel wächst mit zunehmenden Abstand, dem Radius r
, zum Quadrat. Die Energie nimmt somit im Quadrat zum Abstand der Quelle ab [@Harten_2012_BOOK, S. 123]. Dieses Gesetz lässt sich mit dem Smartphone in einem Experiment veranschaulichen. Hierbei kann man den Schalldruck mit dem Mikrophone oder die Lichtintensität mit dem Helligkeitssensor messen und zusammen mit der Entfernungsänderung aufzeichnen.
Darstellung von Schallinterferenzen:
Diese Arbeit soll untersuchen wie eine solche Lokalisierung umgesetzt werden kann.
Implementierung
In den folgenden Abschnitten wird die verwendete Hardware sowie die Umsetzung beschrieben. Zum Einsatz kommen die Programmiersprachen JavaScript, Python und Kotlin. Dieser Mix erklärt sich aus der gewählten Hardware und dem Vorgehen.
Beacon
Als Bluetooth-Beacon kommen Puck.js\footnote{https://www.puck-js.com/}, Abbildung \ref{fig:puck}, von der Firma Espruino\footnote{http://www.espruino.com/} zum Einsatz. Diese bieten, auf ihrer offenen Plattform, neben Bluetooth noch weitere Sensoren wie: ein Magnetometer zur Messung von Magnetfeldern, ein Accelerometer zur Messung von Beschleunigungen, ein Gyroscope zur Messung der Winkelgeschwindigkeit, einen Temperatursensor und vieles mehr. Durch diese Sensoren kann der Beacon auch für weitere Anwendungen eingesetzt werden, was jedoch nicht Bestandteil dieser Arbeit sein soll.
Durch eine Programmierschnittstelle lässt sich der Beacon mit Hilfe von JavaScript programmieren. Beim Einstieg hilft eine Datenbank mit Beispielprogrammen sowie ein ausführlich dokumentiertes \ac{api} [@Ltd_2017]. Zur Programmierung wird der Beacon mittels Bluetooth mit einer \ac{ide} im Browser verbunden. Abbildung \ref{fig:ide} zeigt die \ac{ide}: links befindet sich die Konsole über die einzelne Befehle direkt auf dem Beacon ausgeführt werden können, rechts ist der Editor zu sehen, in diesem können die Befehle zu Programmen zusammengeführt werden. Der Programmcode kann sowohl temporär zum Testen auf den Beacon geladen werden, als auch nach dem Test im Flash des Beacon gespeichert werden. Bei der temporären Ausführung ist der Code nach einem Batteriewechsel nicht mehr auf dem Beacon. Diese Art der Entwicklung macht das Experimentieren mit den Bluetooth-Beacon sehr einfach.
Modi
Während der Versuche mit den Beacon wird ein hohes Advertising-Intervall benötigt um möglichst viele Advertising-Pakete in kurzer Zeit zu versenden. Dadurch lässt sich die Messgenauigkeit bei kurzer Messdauer erhöhen, führt jedoch zu einer kürzere Batterielebensdauer des Beacon. Um die Batterie nicht zu stark zu belasten, wurden zwei Modi entwickelt. Durch den integrierten Button, kann zwischen dem Versuchsmodus und dem Programmiermodus gewechselt werden. Zur Visualisierung in welchem Modus sich der Beacon befindet wird die eingebaute grüne und rote LED verwendet. Beim Wechsel vom Programmiermodus in den Versuchsmodus leuchtet die grüne LED auf und blinkt dann alle \SI{10}{\second}. Wird der Beacon erneut gedrückt, zeigt die rote LED das Beenden des Versuchsmodus an und der Beacon wechselt in den Programmiermodus zurück.
Identifizierung
Jeder Beacon verfügt über eine einzigartige Hardware-Adresse, \ac{mac}-Adresse genannt. Zur einfachen Identifizierung werden die letzten zwei Byte der \ac{mac}-Adresse in Kleinbuchstaben als Kurzname der Beacon verwendet. Für das Advertising wird vor den Kurznamen ein BLE
für \acl{ble} gesetzt. Tabelle \ref{tab:devices} listet die \ac{mac}-Adresse sowie den dazugehörigen Advertising-Namen und Kurznamen der Beacon auf. Im Versuchsmodus wird der Advertising-Name nicht mit ausgesendet, mehr dazu im Kapitel \ref{advertising}.
\ac{mac}-Adresse | Advertising Name | Kurzname |
---|---|---|
C6:13:E8:3F:69:0F | BLE 690f | 690f |
CD:10:9A:4C:9D:31 | BLE 9d31 | 9d31 |
D6:7C:70:1C:5B:5B | BLE 5b5b | 5b5b |
: Übersicht der \ac{mac}-Adressen und zugehörigen Namen der verwendeten Beacon. \label{tab:devices}
Weiterhin wird für das Advertising ein universeller Identifikator benötigt. Diese erlaubt es die Advertising-Pakete eindeutig zuzuordnen. Espruino bietet hierzu eine reservierte 16 Bit \ac{uuid} 0x0590
für die Entwicklung von Anwendung mit ihrer Hardware. Diese \ac{uuid} wird zur Filterung der Advertising-Pakete im Scanner verwendet.
Advertising
Für das Advertising stehen 31 Byte für benutzerdefinierte Daten zur Verfügung. Davon werden 5 Byte im Versuchsmodus benötigt. Das Advertising-Paket im Versuchsmodus setzt sich aus der 16 Bit langen \ac{uuid} 0x0590
und 3 Byte zur Übertragung der scPower
zusammen. Die scPower
wird in einer festen Reihenfolge abgespeichert und übertragen. Für einen produktiven Einsatz sollten diese Werte eindeutig gekennzeichnet werden. Hierfür sind weitere 26 Byte in dem Advertising-Paket frei.
Für den Versuchsmodus wird der Beacon in den Advertising-\ac{pdu} ADV_NONCONN_IND
, beschrieben in Kapitel \ref{bluetooth-low-energy}, gesetzt. Hierbei lässt der Beacon keine Verbindung zu und reagiert nicht auf Anfragen, sondern sendet nur Advertising-Pakete aus. Das maximales Advertising-Intervall ist in diesem Modus zwar auf \SI{100}{\milli\second} beschränkt, dies ist jedoch für den gewählten Versuchsaufbau ausreichend. Zur Erfassung der Position bewegter Objekte sollte eine aktive Verbindung genutzt werden, da hier das Advertising-Intervall auf \SI{20}{\milli\second} verkürzt werden kann. Der Advertising-Name des Beacons wird im Versuchsmodus nicht ausgesendet.
Im Programmiermodus befindet sich der Beacon im Advertising-\ac{pdu} ADV_IND
. Dieser ist notwendig damit eine Verbindung mit dem Beacon zur erneuten Programmierung hergestellt werden kann. Auch der Advertising-Name des Beacons wird in diesem Modus mit ausgesendet um das Gerät leichter zu Identifizieren.
scPower
Zur Umsetzung eines selbst korrigierenden Systems müssen die Bluetooth-Beacon sowohl als Scanner wie auch als Advertiser fungieren. Im Versuchsmodus scannen die Beacon hierzu, parallel zum Aussenden der Advertising-Pakete, nach solche Paketen von den anderen beiden Beacon. Abbildung \ref{fig:selfkorrekting} zeigt den Ablauf des selbst korrigierenden Systems bei dem Beacon 5b5b ein Advertising-Paket aussendet, welches von den Beacon 690f und 9d31 empfangen und verarbeitet wird. Die Beacon 690f und 9d31 speichern den \ac{rssi}-Wert des Empfangenen Pakets von Beacon 5b5b als scPower
in ihrem Advertising-Paket und senden dieses aus. Bei jedem erneuten empfang eines Advertising-Pakets von Beacon 5b5b wird die scPower
aktualisiert.
Smartphone
Als Smartphone für die Messungen kommt ein OnePlus 7t mit Android-Betriebssystem in der Version 11 zum Einsatz. Für die Anwendungsentwicklung wird die \ac{ide} Android Studio verwendet. Als Programmiersprache wurde Kotlin gewählt und die Smartphone-Anwendung als Bluetooth-Scanner umgesetzt. Über die Benutzeroberfläche, zu sehen in Abbildung \ref{fig:appfrontend}, müssen 4 Eingabefelder vor dem Versuchsstart durch den Anwender ausgefüllt werden. Der Testname dient dazu, die Testdaten bei der Auswertung zu identifizieren, er dient auch als Dateiname für die gespeicherten Daten. In den weiteren drei Feldern wird die, für den durchgeführten Versuch, real gemessene Entfernung zwischen Smartphone und dem jeweiligen Beacon notiert. Sollten ein oder mehrere Beacon im durchgeführten Versuch keine Relevanz haben, so muss hier eine 0 eingetragen werden. Über den Start/Stop-Button am unteren Bildschirmrand der Anwendung wird die Aufzeichnung gestartet. Nach dem Start können die empfangenen Daten im oberen Bildschirmbereich zur Funktionsüberprüfung eingesehen werden. Diese Daten aktualisieren sich automatisch mit jedem empfangenen Advertising-Paket.
Beim Empfang eines Advertising-Pakets wird geprüft, ob das Paket von einem der Beacon versendet wurde. Hierzu wird zunächst nach der \ac{uuid} gefiltert und anschließend nach den \ac{mac}-Adressen der drei Beacon. Ist das Paket von einem der Beacon, so werden die Daten des Advertising-Pakets in einer Textdatei, mit dem Testnamen als Dateinamen, auf dem Smartphone abgelegt. Die Daten werden im \ac{csv}-Format gespeichert, dabei sind die einzelnen Spalten mit Hilfe eines Kommas voneinander getrennt. In Tabelle \ref{tab:datastore} werden die Spalten aufgelistet und ihr Inhalt kurz erläutert.
Spalte | Beschreibung |
---|---|
Time | Empfangszeitpunkt als Unix-Zeitstempel |
Test | Benutzerdefinierter Name des durchgeführten Tests |
Device | \ac{mac}-Adresse des Beacon |
RSSI | Vom Smartphone ermittelter \ac{rssi}-Wert |
5b5b_dist | gemessene Referenzentfernung zum Beacons 5b5b |
5b5b_rssi | Ermittelte scPower des Beacons 5b5b |
690f_dist | gemessene Referenzentfernung zum Beacons 690f |
690f_rssi | Ermittelte scPower des Beacons 690f |
9d31_dist | gemessene Referenzentfernung zum Beacons 9d31 |
9d31_rssi | Ermittelte scPower des Beacons 9d31 |
: Spaltenübersicht der gespeicherten \ac{csv}-Datei bei aktiver Messung. \label{tab:datastore}
Auswertung
Die Auswertung der Messreihen wird auf dem Computer durchgeführt. Dies bietet im Gegensatz zur direkten Auswertung auf dem Smartphone den Vorteil, auch im Nachhinein Änderungen an der Auswertung vornehmen zu können. Als Programmiersprache kommt Python zum Einsatz, welche eine Vielzahl an Bibliotheken zur Arbeit mit großen Datenmenge und zur wissenschaftlichen Auswertung bereithält. Im Anhang dieser Arbeit befindet sich eine Liste der verwendeten Bibliotheken und deren Versionen.
Daten Einlesen
In einem ersten Schritt werden die Daten eingelesen und bereinigt. Zur Bereinigung werden die ersten \SI{5}{\second} und die letzten \SI{10}{\second} der Messreihe entfernt, um den Einfluss durch die Bedienung des Smartphones aus den Messreihen zu beseitigen. Bei der Übermittlung der Daten werden nicht vorhandene Messdaten mit einer 0 initialisiert. Dies würde bei Berechnungen zu Fehlern führen. Um dies zu verhindern werden alle 0 Werte aus den eingelesenen Daten gelöscht.
Um mit den Daten einfacher arbeiten zu können und eine bessere Übersicht zu erhalten, werden die Spalten aus Tabelle \ref{tab:datastore} umgeformt. Hierzu wird der Referenzpunkt aus den Referenzentfernungen zu den Beacons ermittelt und in der neuen Spalte realPosition
gespeichert. Die Referenz-Entfernung sowie die scPower
zu dem jeweiligen Beacon wird ausgelesen und in den Spalte deviceDistance
und scPower
abgelegt.
Im letzten Schritt werden überflüssige Spalten gelöscht. Tabelle \ref{tab:dataclean} zeigt die vorhandenen Spalten nach dem Einlesen.
Spalte | Beschreibung |
---|---|
Time | Empfangszeitpunkt als Unix-Zeitstempel |
Test | Benutzerdefinierter Name des durchgeführten Tests |
Device | \ac{mac}-Adresse des Beacon |
RSSI | Vom Smartphone ermittelter \ac{rssi}-Wert |
scPower | Ermittelter \ac{rssi}-Referenzwert der benachbarten Beacon auf \SI{1}{\meter} |
deviceDistance | Physisch ermittelte Entfernung zwischen dem Beacon und Smartphone |
realPosition | x,y Koordinaten des Smartphones, ermittelt durch die deviceDistance |
: Spaltenübersicht der Messreihen nach dem Einlesen der Daten. \label{tab:dataclean}
Ergänzen
- Ermittlung der
scPower
- Ermittlung eines geglätteten RSSI
- Gaußfilterung
Versuchsvorbereitung
Um ein besseres Verständnis über das System und seine Eigenschaften zu erhalten, werden verschiedene Referenzmessungen durchgeführt. Betrachtet werden hierbei die Auswirkungen der Orientierung von Smartphone und Beacon sowie eventuelle Abweichungen der verwendeten Hardware. Mit dieser Erkenntnis kann im weiteren Verlauf eine Kalibrierung des Systems vorgenommen und der Versuchsaufbau, beschrieben in Kapitel \ref{fig:versuchsaufbau}, optimiert werden.
Zur Ermittlung des Abstands zwischen den einzelnen Objekten wird jeweils die Mitte des Objekts verwendet. Dies hat den Vorteil, dass die Orientierung der Geräte keinen Einfluss auf den tatsächlichen Abstand hat.
Referenzmessung
Die Referenzmessungen bieten einen Einblick in das System. Sie sollen systemische Einflüsse aufzeigen und so die Entwicklung eines optimierten Versuchsaufbaus ermöglichen. Die ersten Messungen werden im Freien durchgeführt, um etwaige Störeinflüsse durch Reflektionen und \ac{wifi}-Signalen zu verringern. Ein Karton dient als ebene Fläche auf einer Wiese. Auf dem Karton werden nicht nur die Messobjekte platziert, sondern auch Markierungen aufgebracht, um die Positionierung und Ausrichtung zu erleichtern. Abbildung \ref{fig:messung-outdoor} zeigt den Versuchsaufbau.
Soweit nicht anders beschrieben beträgt der Abstand für die Referenzmessungen \SI{1}{\meter}. Die Messdauer einer Referenzmessung wurde auf eine Minute begrenzt. Die Auswertung findet wie in Abschnitt \ref{auswertung} beschrieben statt.
Beacon-Smartphone
Zunächst wird untersucht, ob die verwendete Hardware fehlerfrei funktioniert und ob es starke Schwankungen zwischen den einzelnen Beacon gibt. Hierzu wird jeder Beacon einzeln zum Smartphone gemessen. Die Messergebnisse in Abbildung \ref{fig:ref-beaconSmartphone} Messung "Outdoor 1" zeigen, dass die Geräte eine ähnliche Sendeleistung aufweisen. Die gemessenen Werte liegen dabei zwischen \SIrange{-71}{-74}{\dB} und sind damit innerhalb der \ac{ble}-Spezifikation von \pm \SI{6}{\dB}
. Die Messergebnisse einer weiteren Messung zu einem anderen Zeitpunkt, zu sehen in Abbildung \ref{fig:ref-beaconSmartphone} Messung "Outdoor 2", zeigen eine höhere Schwankung und eine allgemeine Verschlechterung der gemessenen \ac{rssi}-Werte. Dabei haben sich die Umgebungsbedingungen von der ersten zur zweiten Messung wie folgt verändert: Der Boden war nasser und die Temperatur wesentlich niedriger. Welches der Faktoren wie auf das System einwirkt wurde aus Zeitgründen nicht näher untersucht.
Eine weitere Messung, durchgeführt im Innenraum, soll die Einflüsse durch Reflektionen und \ac{wifi}-Signalen verifizieren. In Abbildung \ref{fig:ref-beaconSmartphone} Messung "Indoor" ist zu sehen, dass der absolute Messwert im Innenraum noch etwas besser wird zu den Außenmessungen. Er liegt nun im Bereich von \SIrange{-61}{-71}{\dB}. Bei diesen Messungen sind jedoch einige Außreißer zu sehen, ob diese durch Reflektionen oder anderen Einflüssen entstehen, wurde nicht weiter untersucht.
Winkeleinfluss
Bei der Messung des Winkeleinfluss soll untersucht werden, wie sich die Lage der einzelnen Geräte zueinander auf die Messungen auswirken. Hierbei werden in verschiedenen Messungen sowohl das Smartphone, als auch der Beacon rotiert und der \ac{rssi}-Wert mit einem zweiten Gerät auf \SI{1}{\meter} Entfernung gemessen. Die Rotation findet hierbei im Uhrzeigersinn statt. Hieraus ergibt sich eine Verteilung der Rotationswinkel zum Empfänger gegen den Uhrzeigersinn, dies wird in Abbildung \ref{fig:puck-rotation} veranschaulicht.
Smartphone Rotation
Bei den ersten Messungen wird das Smartphone in \SI{45}{\degree} Schritten rotiert. Gerade beim Smartphone ist diese Messung sehr interessant, da die Lage der Bluetooth-Antenne nicht öffentlich dokumentiert ist. Das Smartphone wird hierbei um den Mittelpunkt rotiert. Der Höhrer, also das obere Ende des Smartphones, kennzeichnet \SI{0}{\degree}. In Abbildung \ref{fig:ref-smartphoneRotation} ist zu erkennen, dass der gemessene \ac{rssi}-Wert bei \SI{90}{\degree} die meiste Schwächung erfährt. Der mittlere \ac{rssi}-Wert erstreckt sich von \SI{-77}{\dB} bei \SI{235}{\degree} und \SI{315}{\degree} bis \SI{-91}{\dB} bei \SI{90}{\degree}.
Der abgebildete Schwächungsverlauf über \SI{45}{\degree}, \SI{90}{\degree} und \SI{135}{\degree} lässt die Annahme zu, das sich die Antenne über die rechte Smartphoneseite erstreckt. Beim Einsatz der Formel \ref{eq:beacondistance} mit den Konstanten für das Nexus 4 und einer txPower
von \SI{-81}{\dB}, ermittelt aus dem mittleren \ac{rssi}-Wert der Messreihe, äußert sich die \ac{rssi}-Differenz zwischen \SI{235}{\degree} und \SI{90}{\degree} in einer Entfernungsdifferenz von rund \SI{1,6}{\meter}.
Beacon Rotation
Für die nächste Messung wird der Beacon in \SI{90}{\degree} Schritten im Uhrzeigersinn um den Mittelpunkt rotiert. Wie in Abbildung \ref{fig:puck-rotation} zu erkennen, wird \SI{0}{\degree} durch den Chip auf dem Beacon gekennzeichnet. Bei den Messungen ist die Schwankung des mittleren \ac{rssi}-Werts, von \SI{-64}{\dB} bei \SI{180}{\degree} bis \SI{-68}{\dB} bei \SI{270}{\degree}, als gering einzustufen. Wie Abbildung \ref{fig:ref-beaconrotation} Messung "Beacon zu Smartphone" zeigt, ist die Streuung der Messwerte bei \SI{90}{\degree} und \SI{180}{\degree} am größten.
Als letzte Messungen wird die Rotation eines Beacons in Referenz zu einem zweiten Beacon untersucht. Hierbei lässt sich sowohl eine Aussage über die Dämpfung bei der Abstrahlung des Signals als auch die Dämpfung beim Empfang eines Signals treffen. Der statische Beacon ist bei der Messung mit \SI{0}{\degree}, wie in Abbildung \ref{fig:puck-rotation} gezeigt, zum rotierenden Beacon ausgerichtet. Der \ac{rssi}-Wert der am statischen Beacon gemessen wird zeigt die Dämpfung des ausgehenden Signals beim rotierenden Beacon und ist in Abbildung \ref{fig:ref-beaconrotation} in Messung "statischer Beacon eingehend" zu sehen. Die Messung "rotierender Beacon eingehend" zeigt im gegenzug das am rotierenden Beacon eingehende Signal welches vom statischen Beacon ausgesendet wird.
Durchführung der Kalibrierung
Die Konstanten A
, B
, und C
aus Formel \ref{eq:beacondistance} werden druch Kalibrierungsmessungen nach der Anleitung der Android Beacon Library [@RadiusNetworks_2021] ermittelt. Die Kalibrierung bezieht sich in dieser Anleitung auf ein anderes System und wird mit Hilfe eines iPhones als Referenzgerät durchgeführt. Außerdem werden in der Anleitung Messreihen von \SI{0.25}{\meter} bis \SI{40}{\meter} angefertigt. Da der maximale Abstand in dieser Arbeit bei \SI{1.5}{\meter} liegt, soll die Kalibrierung auf den Bereich von \SI{0.25}{\meter} bis \SI{2}{\meter} in Schritten zu je \SI{0.25}{\meter} durchgeführt werden. Die scPower
wird im späteren Versuch durch die benachbarten Beacon erfasst, daher kommt für die Referenzmessung anstelle des iPhones ein zweiter Beacon zum Einsatz.
Wie aus den Messungen in Abschnitt \ref{beacon-smartphone} hervor geht, weichen die \ac{rssi}-Werte bei feuchter Witterung im Außenbereich stark von denen im Innenbereich ab. Zum Zeitpunkt der Messungen war eine Trockenperiode nicht absehbar, aus diesem Grund wird die Kalibrierung im Innenraum durchgeführt. Um den Einfluss von Störfaktoren wie Reflektionen zu vermindern, wird die Messung möglichst weit entfernt von Wänden und anderen Objekten durchgeführt. Zusätzlich werden alle beweglichen Funkquellen aus der näheren Umgebung des Messbereichs geräumt. Um den Einfluss zufälliger Fehler durch die nicht optimalen Umgebungsbedingungen weiter zu reduzieren, wird die Messsdauer von den in der Anleitung verwendeten \SI{20}{\second} auf \SI{1}{\minute} angehoben.
Mit der aus Formel \ref{eq:beacondistance} entstammenden Formel \ref{eq:regress} wird nun eine Regression auf die Messdaten der Kalibrierung durchgeführt. Dabei werden Parameter für die Konstanten A
und B
ermittelt, durch die die Berechnungen der Messdaten möglichst gut mit der Distanz d
übereinstimmen.
\begin{equation}\label{eq:regress} \begin{aligned} d = A \cdot \left( \cfrac{P_{R_{x}}}{txPower} \right)^{B} \end{aligned} \end{equation}
Die Konstante C
beschreibt den Korrekturfaktor für \SI{1}{\meter} Entfernung. Hierzu werden die Konstanten A = 1,7358
und B = 7,5924
aus der Regression in die Formel \ref{eq:korrektur} eingesetzt und die Messwerte für die Referenzentfernung d = \SI{1}{\meter}
eingesetzt.
\begin{equation}\label{eq:korrektur} \begin{aligned} C = d - A \cdot \left( \cfrac{P_{R_{x}}}{txPower} \right)^{B} \end{aligned} \end{equation}
In Abbildung \ref{fig:calibration} ist der durchschnittliche Fehler auf die einzelnen Entfernungen aufgetragen. Verglichen wird der Fehler unter Verwendung der Kalibrierungsfaktoren zur Verwendung der Standardwerte der Android Beacon Library. Die txPower
, welche sich aus der Kalibrierung ergibt und für die weiteren Messungen eingesetzt wird beträgt \SI{-67}{\dB}. Es ist zu erkennen, dass die Fehlerquote nach Kalibrierung, ab \SI{0.75}{\meter} niedriger ist als mit den Standardwerten.
Versuchsaufbau
Dieses Kapitel beschreibt den Versuchsaufbau. Er orientiert sich an den zuvor behandelten Anforderungen. Dabei liegt der Fokus auf einem Aufbau der leicht nachzubildenden ist und dabei ein hohes maß an Genauigkeit ermöglicht.
Anordnung der Beacon
Die Bluetooth-Beacon werden in einem gleichseitigen Dreieck mit einer Seitenlänge von \SI{1}{\meter} auf einer ebenen Fläche angeordnet (Abbildung \ref{fig:versuchsaufbau}). Hierdurch empfängt jeder Beacon von seinen Nachbarn den RSSI Wert auf \SI{1}{\meter} Entfernung und kann diesen zur Kalibrierung an das Smartphone übermitteln. Dieser Versuchsaufbau ermöglicht es, das System um weitere Beacon zu erweitern. Auch ließe sich hierdurch eine Dreieckspyramide mit 6 gleichlangen Kanten aufbauen, wodurch die Messung auf die 3. Dimension erweitert werden kann.
Messpunkte
Der Versuchsaufbau wird, wie in Abbildung \ref{fig:zones} dargestellt, in drei Zonen eingeteilt. Die ersten beiden Zonen ergeben sich aus der Geometrie des Versuchsaufbaus. Zone 1 hat einen Radius von \SI{0.289}{\meter} und wird durch das gleichseitige Dreieck begrenzt. In dieser Zone ist kein Beacon weiter als \SI{0.866}{\meter} vom Smartphone entfernt. Zone 2 misst einen Radius von \SI{0.577}{\meter} und schließt das Dreieck ein. Die maximale Distanz zu einem Beacon beträgt \SI{1.154}{\meter}. Bei Zone 3 liegt der am weitesten entfernte Punkt \SI{1.5}{\meter} von einem Beacon entfernt. Dieser wurde gewählt, da der Messfehler bis \SI{1.5}{\meter} laut dem Artikel [@Cho_2015a] unter \SI{10}{\percent} liegt. Es ergibt sich dabei ein Radius von \SI{0,75}{\meter} um das Zentrum.
In Tabelle \ref{tab:messpunkte} sind die einzelnen Messpunkte und Abstände zu den Beacon aufgezeigt. Messpunkt A befindet sich im Zentrum der Kreisrunden Zonen. Messpunkt C und D jeweils am Rand von Zone 2 und Zone 3. Um möglichst viele Messpunkte zu erhalten ist der Messpunkt C nicht mittig zwischen zwei Beacon. Eine Besondere Rolle spiel Messpunkt B. Dieser befindet sich auf einer Seite des Dreiecks und liegt somit genau zwischen zwei Beacon. Er wurde gewählt, um den Einfluss des Smartphones auf die Funkstrecke der Beacon zu untersuchen.
\begin{longtable}{llll}
\caption{Messpunkte und deren Abstände zu den Beacon
\label{tab:messpunkte}}\tabularnewline
\toprule
& \multicolumn{3}{l}{Entfernung in cm} \
Messpunkt & 5b5b & 690f & 9d31 \
\midrule
\endfirsthead
%
\endhead
%
A & 57,7 & 57,7 & 57,7 \
B & 86.5 & 50 & 50 \
C & 115,4 & 40 & 70,5 \
D & 67 & 75 & 68 \
E & 90 & 213,4 & 94
\end{longtable}
Um eine Konstante Messung zu gewährleisten werden die Beacon mittig auf den Referenzpunkt in gleicher Orientierung positioniert. Das Smartphone wird so auf den Messpunkten platziert, das der Messpunkt in der Mitte des Geräts ligt.
Da die Anordnung der Antennen gerade im Smartphone nicht bekannt sind, wird die Entfernung zwischen den Beacon und dem Smartphone immer von der Mitte der Geräte gemessen.
Ergebnisse
- Zunächst die Lokalisierung betrachten und dann zu den Gründen wieso diese nicht gut sind!
- Fehlerhafte Zeitlicher Verlauf beim Empfang der Daten
- Connections wären sinnvoll
- Kalibrierung
- Höhere Rate bei der Übertrragung für mehr messdaten
- Correlation RSS und scPower!