|
|
|
@ -86,7 +86,6 @@ differentieller Widerstand (Wechselgr\"oßenwiderstand)
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Kondensator}
|
|
|
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
|
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
|
|
@ -1181,8 +1180,28 @@ Dreiphasiger Wechselrichter Ausgangsspannung erster unterer Schalter ge\"offnet
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\subsubsection{Hochsatzsteller}
|
|
|
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
|
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
|
|
|
\hline
|
|
|
|
|
Induktivität berechnen
|
|
|
|
|
&
|
|
|
|
|
{$\!\begin{aligned}
|
|
|
|
|
L &= \text{Induktivität} \\
|
|
|
|
|
\Delta I_L &= \text{Stromwälligkeit} \\
|
|
|
|
|
I_e &= \text{Eingangsstrom} \\
|
|
|
|
|
U_a &= \text{Ausgangsspannung} \\
|
|
|
|
|
U_e &= \text{Eingangsspannung} \\
|
|
|
|
|
f &= \text{Schaltfrequenz}
|
|
|
|
|
\end{aligned}$}
|
|
|
|
|
&
|
|
|
|
|
{$\!\begin{aligned}
|
|
|
|
|
L = \frac{1}{\Delta I_L} \(U_a - U_e) \cdot \frac{U_e}{U_a} \cdot \frac{1}{f} \\
|
|
|
|
|
\Delta I_L \approx 0,2 \cdot I_e
|
|
|
|
|
\end{aligned}$}
|
|
|
|
|
\\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
\subsection{Frequenzumrichter in der Antriebstechnik}
|
|
|
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
|
|
|