You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1397 lines
26 KiB
TeX
1397 lines
26 KiB
TeX
\documentclass[a4paper, 10pt]{article}
|
|
\usepackage[a4paper,left=1cm,right=1cm,top=1.5cm,bottom=1.5cm]{geometry}
|
|
\usepackage{amsmath}
|
|
\usepackage{textgreek}
|
|
\usepackage{textcomp}
|
|
\usepackage{graphicx}
|
|
\usepackage{enumitem}
|
|
\begin{document}
|
|
|
|
\title{Formelsammlung Grundlagen der Elektrotechnik}
|
|
\author{Marc V\"olkers}
|
|
\date{November 2019}
|
|
\maketitle
|
|
\newpage
|
|
\tableofcontents
|
|
\newpage
|
|
|
|
\section{Grundlagen}
|
|
\subsection{Formelkreis}
|
|
|
|
\begin{figure}[h!]
|
|
\centering
|
|
\includegraphics[width=3cm]{FormelradElektronik.png}
|
|
\caption{http://www.sengpielaudio.com/Formelrad-Elektrotechnik.htm}
|
|
\label{fig:formelrad}
|
|
\end{figure}
|
|
|
|
\section{EUE04}
|
|
\subsection{Widerstand}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
Temperaturabh\"angigkeit Widerstand (0 K = -273,15 \textcelsius )
|
|
&
|
|
{$\!\begin{aligned}
|
|
\alpha &= \text{Temp. Koeffizient} \\
|
|
\vartheta_0 &= \text{Betugstemp.}\\
|
|
\vartheta &= Temperatur\\
|
|
R_0 &= \text{Widerstand bei } \vartheta_0
|
|
\end{aligned}$}
|
|
|
|
|
|
&
|
|
{$\!\begin{aligned}
|
|
R(\vartheta) &= R_0(1+\alpha\Delta\vartheta)\\
|
|
\Delta\vartheta &= \vartheta - \vartheta_0
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
Elektrische Verlustleistung
|
|
&
|
|
{$\!\begin{aligned}
|
|
R_{TH} &= \text{thermischer Widerstand} \\
|
|
\vartheta_U &= \text{Umgebungstemp.}\\
|
|
\vartheta &= \text{Oberfl\"achentemp.}\\
|
|
\end{aligned}$}
|
|
|
|
|
|
&
|
|
{$\!\begin{aligned}
|
|
P_V = \frac{\vartheta - \vartheta_U}{R_{TH}}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
Gleichstromwiderstand arbeitspunktabh\"angig
|
|
&
|
|
|
|
&
|
|
{$\!\begin{aligned}
|
|
R_{AP} = \frac{U_{AP}}{I_{AP}}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
differentieller Widerstand (Wechselgr\"oßenwiderstand)
|
|
&
|
|
|
|
&
|
|
{$\!\begin{aligned}
|
|
r_{DAP} = \frac{\Delta U_{AP}}{\Delta I_{AP}}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
\end{tabular}
|
|
|
|
|
|
\subsection{Kondensator}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Kapazit\"at
|
|
&
|
|
{$\!\begin{aligned}
|
|
\varepsilon &= \text{Permitivit\"at} \\
|
|
A &= \text{Fl\"ache}\\
|
|
d &= \text{Fl\"achenabstand}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
C = \frac{\varepsilon\cdot A}{d}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
Kapazit\"at
|
|
&
|
|
{$\!\begin{aligned}
|
|
Q &= \text{Ladung} \\
|
|
U &= \text{Spannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
C = \frac{Q}{U}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
Verlustfaktor
|
|
&
|
|
{$\!\begin{aligned}
|
|
tan\delta &= \text{Verlustfaktor}\\
|
|
P &= \text{Wirkleistung} \\
|
|
Q &= \text{Blindleistung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
tan\delta = \frac{P}{Q}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
\end{tabular}\\
|
|
|
|
|
|
|
|
|
|
\subsection{Spule}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Induktivit\"at
|
|
&
|
|
{$\!\begin{aligned}
|
|
\Psi(I) &= \text{magnetischer Fluss?} \\
|
|
I &= \text{Stomst\"arke}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
L(I) = \frac{\Psi(I)}{I}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
|
|
|
|
Induktivit\"at
|
|
&
|
|
{$\!\begin{aligned}
|
|
\mu_0 &= \text{mag. Feldkonstante} \\
|
|
&= 4\pi*10^{-7} Vs/Am \\
|
|
\mu_R &= \text{Permeabilit\"atszahl} \\
|
|
A &= \text{durchsetzte Fl\"ache}\\
|
|
n &= \text{Anzahl Windungen}\\
|
|
l &= \text{mag. Wegl\"ange}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
L = \mu_0\cdot \mu_R\cdot \frac{A\cdot n^2}{l}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
Verlustfaktor
|
|
&
|
|
{$\!\begin{aligned}
|
|
tan\delta &= \text{Verlustfaktor}\\
|
|
G &= \text{Spuleng\"ute} \\
|
|
P &= \text{Wirkleistung}\\
|
|
Q &= \text{Blindleistung}\\
|
|
R &= \text{Widerstand}\\
|
|
\omega &= \text{Winkelgeschwindigkeit}\\
|
|
&= 2*\pi*f\\
|
|
f &= \text{Frequenz}\\
|
|
L &= \text{Induktivit\"at}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
tan\delta = \frac{1}{G} = \frac{P}{Q} = \frac{R}{\omega\cdot L}
|
|
\end{aligned}$}
|
|
|
|
\\
|
|
\hline
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
\newpage
|
|
|
|
|
|
|
|
\subsection{Diode}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Strom-Spannungs-Abh\"anigkeit
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_D &= \text{Diostenstrom}\\
|
|
U_D &= \text{Diodenspannung}\\
|
|
I_S &= \text{Sperrstrom}\\
|
|
U_T &= \text{Thermospannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_D = I_S(e^{\frac{U_D}{U_T}}-1)
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Thermospannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
k &= \text{Bolzmannkonstnant}\\
|
|
&= 1,38066*10^{-23} Ws/K\\
|
|
e_0 &= \text{Elementarladung}\\
|
|
&= 1,602189*10^{-19} As\\
|
|
T &= \text{absolute Temperatur in K}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_T = \frac{k * T}{e_0}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Diodenspannung bei linearisiertem Verlauf
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_F &= \text{Flussspannung}\\
|
|
r_D &= \text{Widerstand}\\
|
|
I_D &= \text{Diodenstrom}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_D = U_F+r_DI_D
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Verlustleistung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_F &= \text{Flussspannung}\\
|
|
r_D &= \text{Widerstand}\\
|
|
I_D &= \text{Diodenstrom}\\
|
|
T &= \text{Periodendauer}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
P_V &= \frac{1}{T}\int_{0}^{T}u_D(t)i_D(t)\\
|
|
&= U_F\frac{1}{T}\int_{0}^{T}i_D(t)dt+r_D\frac{1}{T}\int_{0}^{T}i_D^2(t)dt\\
|
|
&= U_F\bar{I}_D+r_DI^2_{DEFF}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Transistor}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Emitterstrom
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_C &= \text{Kollektorstrom}\\
|
|
I_B &= \text{Basisstrom}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_E = I_C+I_B
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Kollektor-Emitter-Spannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{CB} &= \text{Kollektor-Bsis-Spannung}\\
|
|
U_{BE} &= \text{Basis-Emitter-Spannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{CE} = U_{CB}+U_{BE}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Kollektor Widerstand
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_B &= \text{Betriebsspannung}\\
|
|
U_{CEA} &= \text{Kollektor-Emitter}\\
|
|
&\text{Spannung Arbreitspunkt}\\
|
|
I_{CA} &= \text{Kollektorstrom}\\
|
|
&\text{Arbeitspunkt}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
R_{C} = \frac{U_B-U_{CEA}}{I_{CA}}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
4 Quadranten Kennlinienfeld Arberitspunkt in der Mitte
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{CEA} &= \text{Kollektor-Emitter-}\\&\text{Spannung Arbeitspunkt}\\
|
|
U_B &= \text{Betriebsspannung}\\
|
|
I_{CA} &= \text{Kollektorstrom}\\
|
|
&\text{Arbeitspunkt}\\
|
|
R_C &=Kollektor Widerstand\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{CEA} &= \frac{U_B}{2}\\
|
|
I_{CA} &= \frac {U_B}{2R_C}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Verstärkung
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_{C} &= \text{Kollektorstrom}\\
|
|
I_B &= \text{Basisstrom}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
B &= \frac{I_C}{I_B}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Arbeitspunkteinstellung \"uber Spannungsteiler
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_{Q} &= \text{Querstrom}\\
|
|
I_B &= \text{Basisstrom}\\
|
|
R_{1/2} &= \text{Spannungsteiler}\\ & \text{Widerstände}\\
|
|
U_{BEA} &= \text{Basis-Emitter-}\\ & \text{Spannung Arbeitspunkt}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_Q &= 10\cdot I_B\\
|
|
R_1 &= \frac{U_B - U_{BEA}}{I_Q+I_B}\\
|
|
&= \frac{U_B-U_{BEA}}{11\cdot I_B}\\
|
|
R_2 &= \frac{U_{BEA}}{I_Q} = \frac{U_{BEA}}{10\cdot I_B}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
\newpage
|
|
\subsection{Feld Effekt Transistor (FET)}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Drain-Source Abschn\"urgrenze Strom
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_{DSS} &= \text{Maximaler Drain}\\ & \text{Strom}\\
|
|
U_{DSP} &= \text{Drain Source}\\ & \text{Abschn\"urspannung}\\
|
|
U_{DSS} &= \text{Maximale Drain-Source}\\ & \text{Spannung}
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_{DSP} &= I_{DSS} \left( \frac{U_{DSP}}{U_{DSS}} \right) ^ 2
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Drain-Source Abschn\"urgrenze Spannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_P &= \text{Pinch-off-Spannung}\\
|
|
U_{GS} &= \text{Gate-Source Spannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{DSP} &= U_{GS} - U_P
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Abschn\"urgrenze Strom anhand von Pinch-off-Spannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_{DSP} &= \text{Drain-Source}\\ & \text{Abschn\"urstrom}\\
|
|
U_P &= \text{Pinch-off-Spannung}\\
|
|
U_{GS} &= \text{Gate-Source Spannung}\\
|
|
I_{DSS} &= \text{Maximaler Drain-Source}\\ & \text{Strom}
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_{DSP} &= I_{DSS} \left( \frac{U_{GS}}{U_{p}}-1 \right) ^ 2
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Steilheit (A/V)
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_P &= \text{Pinch-off-Spannung}\\
|
|
U_{GS} &= \text{Gate-Source Spannung}\\
|
|
I_{DSS} &= \text{Maximaler Drain-Source}\\ & \text{Strom}
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
S &= \frac{dI_{DSP}}{dU_{GS}} = \frac{2I_{DSS}}{U_P} \left( \frac{U_GS}{U_P}-1 \right)
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Operationsverst\"arker}
|
|
|
|
Eigenschaften:
|
|
\begin{itemize}[noitemsep]
|
|
\item Eingangswiderstand $= \infty$
|
|
\item Ausgangswiderstand $= 0$
|
|
\item $U_d = 0$ (Virtueller Kurzschluss zwischen den Eingängen)
|
|
\end{itemize}
|
|
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
Gegengekoppelt Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
\nu_D &= \text{Differenzverst\"arkung}\\
|
|
U_D &= \text{Differenzspannung}\\
|
|
U_{P} &= \text{Spannung Eingang}\\
|
|
U_{N} &= \text{Spannung invert. Eingang}\\
|
|
U_E &= \text{Eingangsspannung}
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_A &= \nu_D*U_D =\nu_d(U_P-U_N) \\
|
|
&= \nu_D(U_E-k_RU_A)\\
|
|
&= \frac{\nu_D}{(1+\nu_D\cdot k_R)}\cdot U_E\\
|
|
& \sim \frac{1}{k_r}*U_E
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
\end{tabular}
|
|
|
|
|
|
\newpage
|
|
\section{ EUE05}
|
|
\subsection{Grundlagen digitale Schaltungstechnik}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Spannungspegel
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{AHMIN} &=\text{Ausgang} \\ & \text{Spannung High Min}\\
|
|
U_{EHMIN} &= \text{Eingang} \\ & \text{Spannung High Min}\\
|
|
U_{AHMAX} &=\text{Ausgang} \\ & \text{Spannung Low Max}\\
|
|
U_{EHMAX} &= \text{Eingang} \\ & \text{Spannung Low Max}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{AHMIN} &> U_{EHMIN}\\
|
|
U_{ALMAX} &< U_{ElMAX}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
St\"orabst\"ande / St\"orschwellen
|
|
&
|
|
{$\!\begin{aligned}
|
|
\Delta U_{LS} &=\text{St\"orabstand Low}\\
|
|
\Delta U_{HS} &=\text{St\"orabstand High}\\
|
|
\text{...} &\text{\ (siehe Spannungspegel)}
|
|
\end{aligned}$}
|
|
|
|
&
|
|
{$\!\begin{aligned}
|
|
\Delta U_{LS} &= U_{ELMAX} - U_{ALMAX} > 0\\
|
|
\Delta U_{HS} &= U_{AHMIN} - U_{EHMIN} > 0\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Eingangslastfaktor (FAN-IN)
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_E &=\text{Eingangsstrom Bauteil}\\
|
|
I_{ES} &=\text{Eingangsstrom} \\ & \text{Standardeingang} \\ & \text{gleiche Schaltkeisfamilie}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\eta_E &= \frac{I_E}{I_{ES}}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Ausgangslastfaktor (FAN-OUT)
|
|
&
|
|
{$\!\begin{aligned}
|
|
I_A &=\text{Ausgangsstroml}\\
|
|
I_{ES} &=\text{Eingangsstrom} \\ & \text{Standardeingang} \\ & \text{gleiche Schaltkeisfamilie}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\eta_A &= \frac{I_A}{I_{ES}}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Delay Eingangs-/Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
t_{DLH} &=\text{Zeitdifferenz Low High}\\
|
|
t_{DHL} &=\text{Zeitdifferenz High Low}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
t_D = \frac{1}{2}(t_{DLH} + t_{DHL})
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Speed-Power-Produkt
|
|
&
|
|
{$\!\begin{aligned}
|
|
P_{v} &=\text{Mittlere Verlustleistung}\\ & \text{Umschaltvorgang} \\
|
|
t_{DHL} &=\text{Zeitdifferenz High Low}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
W = P_V\cdot t_D
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Analog-Digital- / Digital-Analog Umsetzer}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Eingangsgr\"oße (Meist Spannung)
|
|
&
|
|
{$\!\begin{aligned}
|
|
z &=\text{bin\"ar kodierte Zahl} \\ & \text{am Ausgang}\\
|
|
Q &= \text{Quatisierungseinheit} \\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_E = z\cdot Q
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Maximale Anzahl der Quantisierungsstufen
|
|
&
|
|
{$\!\begin{aligned}
|
|
N &=\text{Bitzahl}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
Z_{MAX} = 2^N
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Tastverh\"altnis DA Z\"ahlverfahren
|
|
&
|
|
{$\!\begin{aligned}
|
|
z &=\text{Eingangszahlenwert}\\
|
|
n &=\text{Aufl\"osung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
TAST = \frac{z}{2^n} = \frac{z}{z_{MAX}+1}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Mittelwert der Impulsfolge DA Z\"ahlverfahren
|
|
&
|
|
{$\!\begin{aligned}
|
|
TAST &=\text{Tastverh\"altnis}\\
|
|
U_{REF} &=\text{Eingangsspannung}\\
|
|
z &=\text{digitaler Zahlenwert}\\
|
|
Q &=\text{Quantisierungseinheit}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\bar{U}_A = TAST\cdot U_{REF} = zQ
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
\newpage
|
|
\section{LEL01}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Arithmetischer Mittelwert&
|
|
|
|
&
|
|
{$\!\begin{aligned}
|
|
\bar{u} = \frac{1}{T}\cdot \int_{0}^{T}i(t)dt
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Effektivwert
|
|
&
|
|
|
|
&
|
|
{$\!\begin{aligned}
|
|
\\
|
|
U_{eff} = \sqrt{\frac{1}{T}\cdot \int_{0}^{T}u^2(t)dt)}\\
|
|
I_{eff} = \sqrt{\frac{1}{T}\cdot \int_{0}^{T}i^2(t)dt)}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Mischgr\"oße aus Gleich und Wechselanteil
|
|
&
|
|
{$\!\begin{aligned}
|
|
\bar{x} = \text{Gleichgr\oßenanteil}\\
|
|
x_{\sim}(t) = \text{Wechselgr\"oßenanteil}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
u(t) = \bar{u} + u_{\sim}(t)\\
|
|
i(t) = \bar{i} + i_{\sim}(t)\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Mischgr\"oße Wechselanteil
|
|
&
|
|
{$\!\begin{aligned}
|
|
x_{\sim}(t) = \text{Wechselgr\"oßenanteil}\\
|
|
\hat{x} = \text{Scheitelwert}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_{\sim}(t) = \sum_{v=1}^{\infty}\hat{u}_v\cdot sin(v\omega t + \varphi_v)\\
|
|
i_{\sim}(t) = \sum_{v=1}^{\infty}\hat{i}_v\cdot sin(v\omega t + \varphi_v)
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Gesamteffektivwert Mischgr\"oße
|
|
&
|
|
{$\!\begin{aligned}
|
|
X_{d} &= \text{Gleichgr\"oßen-}\\ & \text{effektivwert}\\
|
|
X_{eff\sim} &= \text{Wechselgr\"oßen-}\\ & \text{effektivwert}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{eff} &= \sqrt{U_d^2 + U_{eff\sim}^2}\\
|
|
I_{eff} &= \sqrt{I_d^2 + I_{eff\sim}^2}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Welligkeit ( w=0 -\textgreater reine Gleichgr\"oße; w -\textgreater $\infty$ reine Wechselgr\"oße)
|
|
&
|
|
{$\!\begin{aligned}
|
|
X_{eff} &= \text{Gesamteffektivwert}\\
|
|
X_{d} &= \text{Gleichgr\"oßen-}\\ & \text{effektivwert}\\
|
|
X_{eff\sim} &= \text{Wechselgr\"oßen-}\\ & \text{effektivwert}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
w_u &= \frac{U_{eff\sim}}{U_d} = \sqrt{ \left( \frac{U_{eff}}{U_d} \right)^2-1}\\
|
|
w_i &= \frac{I_{eff\sim}}{I_d} = \sqrt{ \left( \frac{I_{eff}}{I_d} \right)^2-1}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Klirrfaktor (Qualit\"at der erzeugten Wechselspannung k=0 -\textgreater rein Sinusf\"ormig)
|
|
&
|
|
{$\!\begin{aligned}
|
|
X_{eff} &= \text{Gesamteffektivwert}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\\
|
|
k_u &= \frac {\sqrt{\sum_{v=2}^{\infty} U_{eff,v}^2}} {U_{eff}}\\
|
|
k_i &= \frac {\sqrt{\sum_{v=2}^{\infty} I_{eff,v}^2}} {I_{eff}}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Berechung einfacher Kurvenverl\"aufe (diskrete Werte)
|
|
&
|
|
{$\!\begin{aligned}
|
|
D &= \frac{t_1}{T} \text{Tastverh\"altnis}\\
|
|
U_D &=\text{diskrete Spannung}
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\\
|
|
\bar{u} = U_d\cdot D\\
|
|
U_{eff} = U_d\cdot \sqrt{D}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Kondensator Strom-Spannungs-Beziehung
|
|
&
|
|
{$\!\begin{aligned}
|
|
i_C &= \text{Kondensatorstorm}\\
|
|
u_C &= \text{Kondensatorspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
i_C &= C\cdot \frac{du_C}{dt}\\
|
|
u_C &= \frac{1}{C}\cdot \int_{0}^{t}i_C(\tau)d\tau+i_C (t=0)
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Spule Strom-Spannungs-Beziehung
|
|
&
|
|
{$\!\begin{aligned}
|
|
i_L &= \text{Spulenstrom}\\
|
|
u_L &= \text{Spulenspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_L &= L\cdot \frac{di_L}{d_t}\\
|
|
i_L &= \frac{1}{L}\cdot \int_{0}^{t}u_L(\tau)d\tau + u_L (t=0)
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Scheinleistung
|
|
&
|
|
{$\!\begin{aligned}
|
|
P &= \text{Wirkleistung}\\
|
|
Q &= \text{Blindleistung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
S &= \sqrt{P^2+Q^2}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Verschiebungsfaktor
|
|
&
|
|
{$\!\begin{aligned}
|
|
P &= \text{Wirkleistung}\\
|
|
S_1 &= \text{Spulenspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\lambda = \frac{P}{S} = \frac{I_1}{I}\cdot cos\varphi_1
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
W\"armestr\"omungsfeld Temperaturdifferenz
|
|
&
|
|
{$\!\begin{aligned}
|
|
R_{th} &= \text{W\"armewiderstand } ( \frac{K}{W} )\\
|
|
P_v &= \text{Verlustleistung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\Delta\vartheta &= R_{th}\cdot P_V\\
|
|
\vartheta_j - \vartheta_a &= (R_{thjc} + R_{thcs} + R_{thsa})\cdot P_V
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
transienter W\"armewiderstand
|
|
&
|
|
{$\!\begin{aligned}
|
|
P\Delta\vartheta(t) &= \text{Temperaturdifferenz}\\
|
|
P_v &= \text{Verlustleistung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
Z_{th} = \frac{\Delta\vartheta(t)}{P_V}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\newpage
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Stromrichter M1U Diodenspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_S &= \text{Eingangsspanmnung}\\
|
|
u_d &= \text{Ausgangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_D = u_S-u_d = u_S - i_d\cdot R\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Gleichrichter M1U Mittelwert Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{eff} &= \text{Effektivwert}\\ & \text{Eingansspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d = \frac{\sqrt{2}U_{eff}}{\pi}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Gleichrichter M2U Mittelwert Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{eff1} &= \text{Effektivwert}\\ & \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d = \frac{2\sqrt{2}U_{eff1}}{\pi}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Gleichrichter M3U Mittelwert Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{eff1} &= \text{Effektivwert}\\ & \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d = \frac{3\sqrt{3}\sqrt{2}U_{eff1}}{2\pi}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Gleichrichter B2U Mittelwert Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{eff1} &= \text{Effektivwert}\\ & \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d = \frac{4\sqrt{2}U_{eff1}}{\pi}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Gleichrichter B6U Mittelwert Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{eff1} &= \text{Effektivwert}\\ & \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d = \frac{3\sqrt{3}\sqrt{2}U_{eff1}}{\pi}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Tiefsetzsteller Einschaltzeit
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{Steuer} &= \text{Steuerspannung}\\
|
|
\hat{U}_{SZ} &= \text{S\"agezahnspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
t_{ein} = \frac{U_{Steuer}}{\hat{U}_{SZ}}\cdot T_s\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Tiefsetzsteller Mittelwert Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{d} &= \text{Eingangsspannung}\\
|
|
t_{ein} &= \text{Einschaltzeit}\\
|
|
T_S &= \text{Schaltperiode}\\
|
|
D &= \text{Tastgrad}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{0} = \frac{t_{ein}}{T_S}\cdot U_d = D\cdot U_d\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
LC Tiefpassfilter Spannungsteiler
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_{0} &= \text{Mittelwert}\\ & \text{Ausgangsspannung}\\
|
|
u_{0F} &= \text{Filtereingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\frac{U_{0}}{u_{0F}(t)} = \frac{1}{1-\omega ^2 LC}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
LC Tiefpassfilter Eckfrequenz
|
|
&
|
|
{$\!\begin{aligned}
|
|
f_E &= \text{Eckfrequenz}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\omega_E = 2\pi\cdot f_E = \frac{1}{\sqrt{LC}}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
LC Tiefpassfilter Oberschwingungen unterdr\"ucken
|
|
&
|
|
{$\!\begin{aligned}
|
|
f_E &= \text{Eckfrequenz}\\
|
|
f_S &= \text{Schaltfrequenz}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
f_E= \frac{1}{2\pi\cdot \sqrt{LC}} \text{ mit } \frac{f_E}{f_S} = 0,01\\
|
|
L = \frac{1}{C(2\pi\cdot 0,01\cdot f_S)^2}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Hochsetzsteller Zusammenhang Eingansspannung und Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_0 &= \text{Ausgangsspannung}\\
|
|
U_d &= \text{Eingangsspannung}\\
|
|
D &= \text{Tastverh\"altnis}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\frac{U_0}{U_d} = \frac{T_S}{T_S-t_{ein}} = \frac{1}{1-D} \\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{LEL02}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
|
|
|
|
Wechselrichter mit Halbbr\"ucke Scheitelwert Ausgangswechselspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d &= \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\hat{U}_{0,1} = \frac{2}{\pi}\cdot U_d \\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Wechselrichter mit Vollbr\"ucke Scheitelwert Ausgangswechselspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d &= \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\hat{U}_{0,1} = \frac{4}{\pi}\cdot U_d \\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Sinusf\"ormige Pulsweitenmodulation Ausgangsspannung
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d &= \text{Eingangsspannung}\\
|
|
u_{Steuer} &= \text{Steuerspannung}\\
|
|
\hat{U}_\Delta &= \text{Amplitude} \\ & \text{Dreiecksspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_0 = U_d\cdot \frac{u_{Steuer}}{\hat{U}_\Delta}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Sinusf\"ormige Pulsweitenmodulation Aussteuergrad
|
|
&
|
|
{$\!\begin{aligned}
|
|
\hat{U}_{Steuer} &= \text{Amplitude} \\ & \text{Steuerspannung}\\
|
|
\hat{U}_\Delta &= \text{Amplitude} \\ & \text{Dreiecksspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
m_a = \frac{\hat{U}_{Steuer}}{\hat{U}_\Delta}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Sinusf\"ormige Pulsweitenmodulation Verh\"altnis von Schaltfrequenz zu Grundschwingfrequenz (muss gr\"oßer als 10 sein)
|
|
&
|
|
{$\!\begin{aligned}
|
|
f_S &= \text{Schaltfrequenz}\\
|
|
f_1 &= \text{Grundschwingfrequenz}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
m_f = \frac{f_S}{f_1}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Dreiphasiger Wechselrichter Ausgangsspannung erster Schalter geschlossen
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d &= \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_{a0}(t) = \frac{U_d}{2}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Dreiphasiger Wechselrichter Ausgangsspannung erster unterer Schalter ge\"offnet
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d &= \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_{a0}(t) = -\frac{U_d}{2}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Dreiphasiger Wechselrichter Ausgangsspannung erster unterer Schalter ge\"offnet
|
|
&
|
|
{$\!\begin{aligned}
|
|
U_d &= \text{Eingangsspannung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_{a0}(t) = -\frac{U_d}{2}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
\subsubsection{Hochsatzsteller}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
Induktivität berechnen
|
|
&
|
|
{$\!\begin{aligned}
|
|
L &= \text{Induktivität} \\
|
|
\Delta I_L &= \text{Stromwälligkeit} \\
|
|
I_e &= \text{Eingangsstrom} \\
|
|
U_a &= \text{Ausgangsspannung} \\
|
|
U_e &= \text{Eingangsspannung} \\
|
|
f &= \text{Schaltfrequenz}
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
L = \frac{1}{\Delta I_L} \left( U_a - U_e \right) \cdot \frac{U_e}{U_a} \cdot \frac{1}{f} \\
|
|
\Delta I_L \approx 0,2 \cdot I_e
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
\end{tabular}
|
|
|
|
\subsection{Frequenzumrichter in der Antriebstechnik}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
Kraft
|
|
&
|
|
{$\!\begin{aligned}
|
|
m &= \text{Masse}\\
|
|
a &= \text{Beschleunigung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
F = m\cdot a = m\cdot \frac{dv}{dt} \Rightarrow \frac{dv}{dt} = \frac{F}{m}\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Geschwindigkeit / Weg
|
|
&
|
|
{$\!\begin{aligned}
|
|
\omega &= \text{Winkelgeschwindigkeit}\\
|
|
r &= \text{Radius}\\
|
|
\varphi &= \text{Winkel}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
v &= \omega\cdot r \Rightarrow dv = r\cdot d\omega \\
|
|
s &= r\cdot \varphi \Rightarrow ds = r\cdot d\varphi\\
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Kraft mit Drehmoment
|
|
&
|
|
{$\!\begin{aligned}
|
|
r &= \text{Radius}\\
|
|
m &= \text{Masse}\\
|
|
v &= \text{Geschwindigkeit}\\
|
|
t &= \text{Zeit}\\
|
|
F &= \text{Kraft}\\
|
|
M &= \text{Drehmoment}\\
|
|
J &= \text{Tr\"agheitsmoment}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
F\cdot r &= M \Rightarrow F = \frac{M}{r} \\
|
|
\frac{dv}{dt} &= \frac{F}{M} = \frac{M}{r\cdot m} \Rightarrow \frac{1}{r}\cdot \frac{M}{r\cdot m} = \frac{M}{r^2+m}\\
|
|
J &= r^2\cdot m
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Bewegungsgleichung f\"ur rotierende K\"orper
|
|
&
|
|
{$\!\begin{aligned}
|
|
\omega &= \text{Winkelgeschwindigkeit}\\
|
|
r &= \text{Radius}\\
|
|
m &= \text{Masse}\\
|
|
t &= \text{Zeit}\\
|
|
M &= \text{Drehmoment}\\
|
|
J &= \text{Tr\"agheitsmoment}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\frac{d\omega}{dt} = \frac{M}{r^2\cdot m} = \frac{M}{J}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Tr\"agheitsmoment eines Volumens
|
|
&
|
|
{$\!\begin{aligned}
|
|
r &= \text{Radius}\\
|
|
m &= \text{Masse}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
J = \int_{V}r^2 dm
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\newpage
|
|
\subsection{Erl\"auterung Drehmomentbildung Synchronmaschine}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
Lorenzkraft
|
|
&
|
|
{$\!\begin{aligned}
|
|
B &= \text{Magnetisches Feld}\\
|
|
I &= \text{Stromst\"arke}\\
|
|
l &= \text{Leiterl\"ange Wicklung}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
F_L = B\cdot I \cdot l
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
Elektrisches Drehmoment
|
|
&
|
|
{$\!\begin{aligned}
|
|
B &= \text{Magnetisches Feld}\\
|
|
I &= \text{Stromst\"arke}\\
|
|
l &= \text{Leiterl\"ange Wicklung}\\
|
|
r &= \text{Rotorradius}\\
|
|
i_a &= \text{Wicklungsstrom}\\
|
|
F_L &= \text{Lorenzkraft}
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
M_{el} = F_L\cdot r = B\cdot I \cdot l \cdot r= B\cdot i_a \cdot l \cdot r
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\subsection{Asynchronmaschine}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
Statordrehfeld synchrone Drehzahl
|
|
&
|
|
{$\!\begin{aligned}
|
|
f_1 &= \text{Frequenz}\\
|
|
n_p &= \text{Kurzschlussl\"aufer}\\ & \text{Polzahl}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
n_s = \frac{f_1}{n_p}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
\hline
|
|
Schlupf
|
|
&
|
|
{$\!\begin{aligned}
|
|
n_s &= \text{Synchrondrehzahl}\\
|
|
n_p &= \text{Mechanische Drehzahl}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
s = \frac{n_s - n_m}{n_s}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\subsection{Schaltnetzteile}
|
|
\begin{tabular}{|p{6cm}|p{5cm}|p{6.5cm}|}
|
|
\textbf{Beschreibung}&\textbf{Variablen}&\textbf{Formel}\\
|
|
\hline
|
|
Transformator Zusammenh\"ange
|
|
&
|
|
{$\!\begin{aligned}
|
|
u_1 &= \text{Eingangsspannnung}\\
|
|
u_2 &= \text{Ausgangsspannung}\\
|
|
N_1 &= \text{Windungsanzahl Eingang}\\
|
|
N_2 &= \text{Windungsanzahl Ausgang}\\
|
|
i_2 &= \text{Stromst\"arke Ausgang}\\
|
|
i_1 &= \text{Stromst\"arke Eingang}\\
|
|
\end{aligned}$}
|
|
&
|
|
{$\!\begin{aligned}
|
|
\frac{u_1}{u_2} = \frac{N_1}{N_2} = \frac{i_2}{i_1}
|
|
\end{aligned}$}
|
|
\\
|
|
\hline
|
|
|
|
|
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
\end{document} |