Grenzwerte

pull/12/head
kreativmonkey 8 years ago
parent 53887aae6b
commit 79a6b078b7

Binary file not shown.

@ -638,6 +638,33 @@ $\overrightarrow{p}$ = Stützvektor und $\overrightarrow{u}$,$\overrightarrow{v}
\end{sectionbox}
% Grenzwerte
% ----------------------------------------------------------------------
\section{Grenzwerte}
\begin{sectionbox}
Der Grenzwert oder Limes einer Folge ist eine Zahl, der die Folge beliebig nah kommt. Eine Folge ist \textbf{konvergent} wenn sie solch einen Wert besitzt, ansonsten \textbf{divergent}
\subsection{Berechnung}
Bei $n \rightarrow \infty$ teilt man durch die variable mit der höchsten Potenz, das Ergebnis ist dann der Grenzwert.
\begin{align*}
&\lim\limits_{n \rightarrow \infty}{\frac{2{n}^{2} -1}{{n}^{2} + 1}} = \lim\limits_{n \rightarrow \infty}{ \frac{ 2 - \frac{1}{ {n}^{2} } }{1 + \frac{ 1 }{ {n}^{2} }} } =\frac{ \lim\limits_{n \rightarrow \infty}{ 2{n}^{2} -1 } }{ \lim\limits_{n \rightarrow \infty}{ {n}^{2} + 1} } = \frac{2-0}{1+0} = 2
\end{align*}
\textbf{Ergebnisse}
\begin{tablebox}{llll}
$\frac{1}{1} = 1 $ & $\frac{1}{0} = \infty $ & $\frac{0}{1} = 0 $ & $\frac{1}{17} = \frac{1}{17}$ \\
\end{tablebox}
\textbf{Vorsicht} bei $\lim\limits_{n \rightarrow a}$, also Limes gegen eine Zahl a. Zunächst setzt man die Zahl a ein und prüft das Ergebnis. Es darf nicht $\frac{0}{0}$ raus kommen. Es wird sich im Zähler und/oder Nenner ein $n - a$ befinden. Die Folge muss dann in Linearfaktoren zerlegt werden und danach die 3 eingesetzt werden.
\begin{align*}
&\lim\limits_{x \rightarrow 1}{ \frac{ {x}^{3} - 6{x}^{2} + 5x }{ 2{x}^{2} + 32x - 34 } } = \lim\limits_{x \rightarrow 1}{ \frac{ {x} \left( x - 1 \right) \left( x - 5 \right) }{ 2 \left( x -1 \right) \left( x + 17 \right) } } \\
= &\lim\limits_{x \rightarrow 1}{ \frac{ x \left(x-5 \right) }{ 2 \left(x+17 \right) } } = \frac{-4}{36} = -\frac{1}{9}
\end{align*}
\end{sectionbox}
% ======================================================================
% End
% ======================================================================

Loading…
Cancel
Save