

Mathematik Cheat Sheet

1. Mengen

1.1. Definizion

Ist E eine Eigenschaft, die ein Element haben kann oder auch nicht, so beschreibt man die Menge der E erfüllenden Elemente durch: $\mathsf{A} = \{x|x \text{ hat Eigenschaft } E\}$

1.2. Operationen

$A \subseteq B$		A ist Teilmenge von B
$A \cup B$	A vereinigt B	$A \cup B = \{x x \in A \text{ oder } x \in B\}$
$A \cap B$	A geschnitten B	$A\cap B=\{x x\in A \text{ und } x\in B\}$
$A \setminus B$	A ohne B	$A \cup B = \{x x \in A \text{ und } x \not\in B\}$
$\mathcal{P}(A)$	Potenzmenge A	Potenzmenge der Menge A
$A \in B$	A Element von B	A ist ein Element von B
$A \notin B$	A kein Element von B	A ist nicht in B enthalten

1.3. Teilmengen

Sind A und B Mengen, so heißt A Teilmenge oder auch Untermenge von B, wenn jedes Element von A auch Element von B ist.

Merke zu Teilmengen

- 1. Jede Menge A ist Teilmenge von sich selbst, das heißt $A\subset A$
- 2. Jede Menge A hat die leere Menge als Teilmenge, das heißt: $\emptyset \subset A$
- **3.** Ist $A \subseteq B$ und $B \subseteq C$, so folgt $A \subseteq C$
- **4.** Aus $A \subseteq B$ und $B \subseteq A$ folgt A = B

1.4. Potenzmenge

Es sei A eine Menge. Dann versteht man unter der Potenzmenge $\mathcal{P}(A)$ der Menge A die Menge aller Teilmengen von A. Auch die Menge \emptyset hat eine Teilmenge es gilt: $\mathcal{P}(\emptyset) = \{\emptyset\}$.

Berechnet wird die Potenzmenge mit Hilfe von $2^{\lfloor A \rfloor}$ (Zwei hoch Kardinalität von A)

1.5. Kardinalität

Es sei A eine endliche Menge. Dann versteht man unter der Kardinalität oder auch Mächtigkeit von A die Anzahl der Elemente von A und schreibt dafür |A|, manchmal auch #A. Hat A unendlich viele Elemente, so sagt man, A hat die Kardinalität unendlich, und schreibt $|A|=\infty$

1.6. Komplement

Das Komplement ist die Differenz zwischen gegebener Menge und Grundmenge.

Komplement Operationen

- 1. $A \cap \overline{A} = \emptyset$
- $2. \ A \cup \overline{A} = M$
- 3. $A \cap \emptyset = \emptyset$
- 4. $\overline{\overline{A}} = A$
- 5. $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- **6.** $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- 7

$$\overline{A \cap B} = M \setminus (A \cap B)$$
$$= (M \setminus A) \cup (M \setminus B)$$
$$= \overline{A} \cup \overline{B}$$

1.7. Regeln

Für zwei Mengen A und B gelten:		
1. $A \cup A = A$ 2. $A \cap A = A$ 3. $A \cap (A \cup B) = A$ 4. $A \cup (A \cap B) = A$		
Kommutativgesetz	$A \cup B = B \cup A$ $A \cap B = B \cap A$	
Assoziativgesetze	$A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cup C) = (A \cup B) \cup C$	
de Morganschen Regeln	$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$	