1. Introduction

1.1. Terms of use

This template may be used only for cheat sheets that are published on the LaTeX4EI web page.

A lot of effort has been put into this template and therefore all cheat Aheets created with this template shall also be availible on the LaTeX4EI project web page.

©LaTeX4EI, 201

1.2. Purpuse

The purpuse of this document is to give an overview over all functions of he LaTeX4EI template with the goal to help the reader to create beautiful
cheat sheets.

2. Box Environments

For the structuring of the document, the LaTeX4EI template offers different boxes.

2.1. Sectionbox

The main structure is defined through the sectionbox environment.

```
gin{sectionbox}
content of the sectionbo
```

end $\{$ sectionbox\}

2.2. Tablebox

Tables can be set using the tablebox or a tablebox* environment. The table entries are embedded within \begin\{tablebox*\}\{1111\} and } \end } \{ t a b l e b o x * \} .

Example for a table with tablebox:

vector	$\vec{a}=\binom{1}{2}$	matrix	$M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Example of	the	tablebox	

In contrast to that a normal ${ }^{\text {AT }}$ EXtable

```
small table
```


2.3. Symbolbox

A symbolbox can be used to define symbols for different values.
The equation is embedded within \begin\{symbolbox\} and } ${symbolbox\} and} } \\{\text { \end\{symbolbox\}. } }\end{array}$ Example of a symbolbox (to define symbols)

Preasure	$[p]$	$\frac{\mathrm{N}}{\mathrm{m}^{2}}$
Seebeck-Ko.	$[S]$	$\frac{\mathrm{yV}}{\mathrm{K}}$
Wärmeleitf.	$[\lambda]$	$\frac{\mathrm{W}}{\mathrm{mK}}$

.4. Cookbox

cookbox can be used to set beautiful step-by-step instructions. The items are embedded within \begin\{cookbox\} and \end\{cookbox\} }

How to create a beautiful cheat shee

- Read this manual
- Create a beautiful cheat sheet

2.5. Emphbox

really important formulars can be set in a box with a red border.
The equations are embedded within \begin\{emphbox\} and } end\{emphbox\}.

$$
x_{1 / 2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

3. Language and Text

3.1. Text

The LTTEXsource code of this template is interpreted as unicode. Therefore special characters like the german umlauts (ä,öu) can be used easily.

Also greek characters can be written as math commands ($\$ \backslash$ alpha, \beta, \gamma $\$ \rightarrow \alpha, \beta, \gamma$) or as unicode (α, β, γ).

This is also vailid for the math characters: $\int, \partial, \mathbb{R}$ or $\int, \partial, \mathbb{R}$.
 \subsection*{3.2. Language
 \subsection*{3.2. Language
 The language can be choosen with the options english or german}

It is also possible to define a different language for a part of a document: EngGer $\{$ You have chosen the language option english $\}\{D u$ hast ngerman als Sprachoption gewählt\}

However, you can also switch to english in a german cheat sheet using \selectlanguage\{english\}. This guarantees that words are hyphenated correctly.
german!)

4. Images

Images can be included using the \includegraphics command.
Do not use figure environment.
The width should be set as a fraction of \columnwidth

$$
\begin{aligned}
& \text { \begin\{center\} } } \\
{\text { \includegraphics }[w i d t h=0.5 \backslash \text { columnwidth }\} \text { Loogo }\}} \\
{\text { \end\{center\} } }
\end{array}
\end{aligned}
$$

The includegraphics command searches for images in ./ and ./img. The file extension is added automatically.

5. Conventions

matting is helpful for the understanding of: variables, stants, functions, fixed units, vectors, matrices, sets, complex values, ran dom variables

5.1. General conventions for cheat sheets

- Always the name first and the the symbol afterwards

Example: "The angular velocity ω, "The angular velocity \omega"

- Densities are always set in small letters
- Brackets around fractions or bigger equations are set with \backslash left (\right)

5.2. Tables		
Line	B/W	Colored
Line on top	\trule	\ctrule
Linie in the middle	\mule	\cmule
Line at bottom	\brule	\cbrule

5.3. Boxes

Different topics are categorized within boxes. The following types of boxes
sectionbox: for a topic (grey)
tablebox: for colored tables
symbolbox: for units and symbols (orange)
emphbox: for very important equations (red box)
topicbox: for important overviews about the topic
For further information on how to use the different boxes please refer to

5.4. Vectors and matrices

vector symbol	\vec r
vector	\vect x
y	
z\}	
transpose	\vec r^{\wedge} \top
matrix symbol	\ma M
matrix	$\backslash \operatorname{mat}\{\mathrm{a} \& \mathrm{~b} \backslash \backslash \mathrm{c}$ \& d
tensor	\tensor C

5.5. Indicies and superscrip

Depending on what the index refers to it should be set differently

- $E_{\text {kin (}}$ (E_-\{\ir kin\}) if an index refers to a word (e.g. "kinetic"). The
- E ($\mathrm{E} x$) if the inde refers to asymbl (es the x
a symbol (e.g. the x compontent of

The same difference also applies for the superscript (${ }^{\circ}$).

5.6. Functions

The trigonometric functions are usually set upright. Therefore the commands \exp, \sin, \cos, \sinh, \cosh and \sinc should be used.
Similar we can set:
Differential operators: \grad, \div, \rot and \1po
Maximum, minium and limes operators: \backslash min, \backslash maxand $\backslash 1 \mathrm{im}$ Stochastic operators: \E, \Var and \Cov

Transformations are usually set in italic letters: \FT, \LTT, \DFT, \ZT and \DTFT

5.7. Complex value

Complex conjugate: \cxc
Imaginary: $\backslash \mathrm{i}$ or $\backslash \mathrm{j}$ or $\backslash \mathrm{k}$ (hypercomplex)

6. Macros

6.1. Own Macros for cheat sheets

Arrows: $\rightarrow, \Rightarrow, \uparrow, \downarrow$
6.2. Own Macros in the scientific package

Vectors and Matrices:	$\vec{a}=\binom{1}{2} \quad M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Proper delta for differential equaions:	$\mathrm{d}^{3} x \mathrm{~d} y \mathrm{~d} z \frac{\mathrm{~d} f(x)}{\mathrm{d} x}$
Functions: SI Units:	$G=6.67 \times 10^{-11} \frac{\mathrm{~kg}}{\mathrm{~s}^{2}}$
Sets:	$\mathrm{N} \mathbb{R} \mathrm{C}$
Random variable:	$X Y Z$
Stochastic:	$\mathrm{P}(X=3), \mathrm{E}(X), \operatorname{Var}(X)$
Further information about the use of the in Scientifific package can be found	

