From 2e9b5dc70e6aec67030fa8f90bd8a1fd81b04808 Mon Sep 17 00:00:00 2001 From: Sebastian Preisner Date: Thu, 22 Jun 2017 08:12:52 +0000 Subject: [PATCH] Erzste Rechenoperationen --- themen/KomplexeZahlen/rechenoperationen.md | 27 ++++++++++++++++++++++ 1 file changed, 27 insertions(+) create mode 100644 themen/KomplexeZahlen/rechenoperationen.md diff --git a/themen/KomplexeZahlen/rechenoperationen.md b/themen/KomplexeZahlen/rechenoperationen.md new file mode 100644 index 0000000..54b3084 --- /dev/null +++ b/themen/KomplexeZahlen/rechenoperationen.md @@ -0,0 +1,27 @@ +## Rechenoperationen +### Division +$ +\frac { z_{ 1 } }{ z_{ 2 } } =\frac { a+bi }{ c+di } \quad =\frac { \left( a+bi \right) }{ \left( c+di \right) } \cdot \frac { \left( c-di \right) }{ \left( c-di \right) } =\frac { ac\quad -\quad adi\quad +\quad bci\quad -\quad bd{ i }^{ 2 } }{ { c }^{ 2 }-{ \left( di \right) }^{ 2 } } =\frac { ac+bd+\left( bc-ad \right) i }{ { c }^{ 2 }+{ d }^{ 2 } } =\frac { ac+bd }{ { c }^{ 2 }+{ d }^{ 2 } } +\frac { \left( bc-ad \right) }{ { c }^{ 2 }+{ d }^{ 2 } } +$ + +### Multiplikation + +**Kadesische Form:** +${ z }_{ 1 }\cdot { z }_{ 2 }=\left( a+bi \right) \cdot \left( c+di \right) =ac+adi+bci+bd{ i }^{ 2 }$ + +**Trigonometrische Form:** +$ +{ z }_{ 1 }\cdot { z }_{ 2 }=\left| { z }_{ 1 } \right| \left( \cos { \left( { \Phi }_{ 1 } \right) } +\sin { \left( { \varphi }_{ 1 } \right) } i \right) \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 2 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right) =\left| { z }_{ 1 } \right| \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 1 } \right) \cdot \cos { \left( { \varphi }_{ 2 } \right) } } +\sin { \left( { \varphi }_{ 1 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right) § + +### Addition +${ z }_{ 1 }+{ z }_{ 2 }=\left( a+bi \right) +\left( c+di \right) =a+c+\left( b+d \right) i§ + +### Subtraktion +${ z }_{ 1 }-{ z }_{ 2 }=\left( a+bi \right) -\left( c+di \right) =a-c+\left( b-d \right) i$ + +### Potenzierung +$ +{ z }^{ n }={ \left( a+bi \right) }^{ n }={ \left( \left| z \right| \cdot \left( \cos { \varphi } +\sin { \varphi } i \right) \right) }^{ n }={ \left| z \right| }^{ n }\cdot \left( \cos { \left( n\cdot \varphi \right) } +\sin { \left( n\cdot \varphi \right) } i \right) +$ + +### Wurzel