|
|
|
@ -32,6 +32,22 @@
|
|
|
|
|
% ----------------------------------------------------------------------
|
|
|
|
|
\maketitle % requires ./img/Logo.pdf
|
|
|
|
|
|
|
|
|
|
% Tipps und Tricks
|
|
|
|
|
% ----------------------------------------------------------------------
|
|
|
|
|
\section{Allgemeines}
|
|
|
|
|
|
|
|
|
|
\begin{sectionbox}
|
|
|
|
|
|
|
|
|
|
\subsection{Sinus \& Cosinus}
|
|
|
|
|
\begin{tablebox}{l|l}
|
|
|
|
|
$\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\
|
|
|
|
|
$\cos 30^\circ = \cfrac{1}{2}\sqrt{3} \cong 0.8660254$ & $\sin 30^\circ = \cfrac{1}{2}$ \\
|
|
|
|
|
$\cos 45^\circ = \cfrac{1}{2}\sqrt{2} \cong 0.70710678$ & $\sin 45^\circ = \cfrac{1}{\sqrt{2}} \cong 0.70710678$ \\
|
|
|
|
|
$\cos 90^\circ = 0$ & $\sin 90^\circ = 1$ \\
|
|
|
|
|
\end{tablebox}
|
|
|
|
|
|
|
|
|
|
\end{sectionbox}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% Mengenlehre
|
|
|
|
|
% ----------------------------------------------------------------------
|
|
|
|
@ -367,21 +383,6 @@ Es gibt immer $n$ Ergebnisse die in ${ z }_{ k } $ für $k= 0$ bis $k= n-1$ bere
|
|
|
|
|
\end{align*}
|
|
|
|
|
\end{sectionbox}
|
|
|
|
|
|
|
|
|
|
% Tipps und Tricks
|
|
|
|
|
% ----------------------------------------------------------------------
|
|
|
|
|
\section{Tipps}
|
|
|
|
|
|
|
|
|
|
\begin{sectionbox}
|
|
|
|
|
|
|
|
|
|
\subsection{Sinus \& Cosinus}
|
|
|
|
|
\begin{tablebox}{l|l}
|
|
|
|
|
$\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\
|
|
|
|
|
$\cos 30^\circ = \cfrac{1}{2}\sqrt{3} \cong 0.8660254$ & $\sin 30^\circ = \cfrac{1}{2}$ \\
|
|
|
|
|
$\cos 45^\circ = \cfrac{1}{2}\sqrt{2} \cong 0.70710678$ & $\sin 45^\circ = \cfrac{1}{\sqrt{2}} \cong 0.70710678$ \\
|
|
|
|
|
$\cos 90^\circ = 0$ & $\sin 90^\circ = 1$ \\
|
|
|
|
|
\end{tablebox}
|
|
|
|
|
|
|
|
|
|
\end{sectionbox}
|
|
|
|
|
% ======================================================================
|
|
|
|
|
% End
|
|
|
|
|
% ======================================================================
|
|
|
|
|