|
|
|
@ -166,8 +166,8 @@
|
|
|
|
|
|
|
|
|
|
\begin{sectionbox}
|
|
|
|
|
|
|
|
|
|
\begin{tablebox}{lll}
|
|
|
|
|
\textbf{x,y} & \textbf{(in Grad)} & \textbf{(im Bogenmaß)} \\
|
|
|
|
|
\begin{tablebox}{l|l|l}
|
|
|
|
|
\textbf{x,y} & \textbf{(in Grad)} & \textbf{(im Bogenmaß)} \\ \hline
|
|
|
|
|
$x > 0, y \ge 0$ & $\varphi = \arctan \cfrac{y}{x} $ & $\varphi = arctan \cfrac{y}{x}$ \\
|
|
|
|
|
$x < 0$ & $\varphi = \arctan \cfrac{y}{x} + 180^\circ $ & $\varphi = arctan \cfrac{y}{x} + \pi $ \\
|
|
|
|
|
$x > 0, y \le 0 $ & $\varphi = \arctan \cfrac{y}{x} + 360^\circ $ & $\varphi = \arctan \cfrac{y}{x} + 2\pi $ \\
|
|
|
|
@ -176,6 +176,8 @@ $x = 0, y < 0 $ & $\varphi = 270^\circ $ & $\varphi = \cfrac{3}{2}\pi
|
|
|
|
|
$x = 0, y = 0 $ & $\varphi = 0^\circ $ & $\varphi = 0 $ \\
|
|
|
|
|
\end{tablebox}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Formen}
|
|
|
|
|
\textbf{Kartesische Form:}
|
|
|
|
|
\begin{align*}
|
|
|
|
@ -246,7 +248,7 @@ Es gibt immer $n$ Ergebnisse die in ${ z }_{ k } $ für $k= 0$ bis $k= n-1$ bere
|
|
|
|
|
\begin{sectionbox}
|
|
|
|
|
|
|
|
|
|
\subsection{Sinus \& Cosinus}
|
|
|
|
|
\begin{tablebox}{ll}
|
|
|
|
|
\begin{tablebox}{l|l}
|
|
|
|
|
$\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\
|
|
|
|
|
$\cos 30^\circ = \cfrac{1}{2}\sqrt{3} \cong 0.8660254$ & $\sin 30^\circ = \cfrac{1}{2}$ \\
|
|
|
|
|
$\cos 45^\circ = \cfrac{1}{2}\sqrt{2} \cong 0.70710678$ & $\sin 45^\circ = \cfrac{1}{\sqrt{2}} \cong 0.70710678$ \\
|
|
|
|
|