| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -43,14 +43,13 @@
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  $\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  Z = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  $\mathbb{Z}$ = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  Q = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in\) Z)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  $\mathbb{Q}$ = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in \mathbb{Z}\), q \(\neq\) 0)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  R = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  $\mathbb{R}$ = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  C = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \(\in\) R\}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  $\mathbb{C}$ = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b \(\in \mathbb{R}\) \}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\end{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\subsection{Binomische Formeln}\label{binomische-formeln}
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
			
			 | 
			 | 
			
				
 
 |