| 
						
						
							
								
							
						
						
					 | 
					 | 
					@ -43,14 +43,13 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\item
 | 
					 | 
					 | 
					 | 
					\item
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  $\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
 | 
					 | 
					 | 
					 | 
					  $\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\item
 | 
					 | 
					 | 
					 | 
					\item
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  Z = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
 | 
					 | 
					 | 
					 | 
					  $\mathbb{Z}$ = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\item
 | 
					 | 
					 | 
					 | 
					\item
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  Q = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in\) Z)
 | 
					 | 
					 | 
					 | 
					  $\mathbb{Q}$ = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in \mathbb{Z}\), q \(\neq\) 0)
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\item
 | 
					 | 
					 | 
					 | 
					\item
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  R = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
 | 
					 | 
					 | 
					 | 
					  $\mathbb{R}$ = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\item
 | 
					 | 
					 | 
					 | 
					\item
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  C = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b
 | 
					 | 
					 | 
					 | 
					  $\mathbb{C}$ = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b \(\in \mathbb{R}\) \}
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  \(\in\) R\}
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\end{itemize}
 | 
					 | 
					 | 
					 | 
					\end{itemize}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\subsection{Binomische Formeln}\label{binomische-formeln}
 | 
					 | 
					 | 
					 | 
					\subsection{Binomische Formeln}\label{binomische-formeln}
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
					 | 
					@ -449,7 +448,7 @@ $a = 0, b = 0 $   & $\varphi = 0^\circ $    &       $\varphi = 0 $       \\
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
						\end{align*}
 | 
					 | 
					 | 
					 | 
						\end{align*}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
						\begin{align*}
 | 
					 | 
					 | 
					 | 
						\begin{align*}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
						{ z }_{ 1 }\cdot { z }_{ 2 } & =\left| { z }_{ 1 } \right| \left( \cos { \left( { \varphi  }_{ 1 } \right)  } +\sin { \left( { \varphi  }_{ 1 } \right)  } i \right) \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi  }_{ 2 } \right)  } \cdot \sin { \left( { \varphi  }_{ 2 } \right)  } i \right) \\ 
 | 
					 | 
					 | 
					 | 
						{ z }_{ 1 }\cdot { z }_{ 2 } & =\left| { z }_{ 1 } \right| \left( \cos { \left( { \varphi  }_{ 1 } \right)  } +\sin { \left( { \varphi  }_{ 1 } \right)  } i \right) \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi  }_{ 2 } \right)  } \cdot \sin { \left( { \varphi  }_{ 2 } \right)  } i \right) \\ 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
						& =\left| { z }_{ 1 } \right| \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi  }_{ 1 } \right) \cdot \cos { \left( { \varphi  }_{ 2 } \right)  }  } +\sin { \left( { \varphi  }_{ 1 } \right)  } \cdot \sin { \left( { \varphi  }_{ 2 } \right)  } i \right)
 | 
					 | 
					 | 
					 | 
						& =\left| { z }_{ 1 } \right| \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi  }_{ 1 } + { \varphi  }_{ 2 } \right)  } +\sin { \left( { \varphi  }_{ 1 } + { \varphi  }_{ 2 } \right)  } i \right)
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
						\end{align*}
 | 
					 | 
					 | 
					 | 
						\end{align*}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
						
 | 
					 | 
					 | 
					 | 
						
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					\textbf{Division}
 | 
					 | 
					 | 
					 | 
					\textbf{Division}
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
					 | 
					
 
 |