[Fix] Multiplikation komplexer Zahlen #12

Merged
kreativmonkey merged 2 commits from nyro/Mathe-Formelsammlung:master into master 7 years ago

Binary file not shown.

@ -43,14 +43,13 @@
\item \item
$\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\} $\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
\item \item
Z = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\} $\mathbb{Z}$ = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
\item \item
Q = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in\) Z) $\mathbb{Q}$ = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in \mathbb{Z}\), q \(\neq\) 0)
\item \item
R = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\) $\mathbb{R}$ = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
\item \item
C = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b $\mathbb{C}$ = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b \(\in \mathbb{R}\) \}
\(\in\) R\}
\end{itemize} \end{itemize}
\subsection{Binomische Formeln}\label{binomische-formeln} \subsection{Binomische Formeln}\label{binomische-formeln}
@ -449,7 +448,7 @@ $a = 0, b = 0 $ & $\varphi = 0^\circ $ & $\varphi = 0 $ \\
\end{align*} \end{align*}
\begin{align*} \begin{align*}
{ z }_{ 1 }\cdot { z }_{ 2 } & =\left| { z }_{ 1 } \right| \left( \cos { \left( { \varphi }_{ 1 } \right) } +\sin { \left( { \varphi }_{ 1 } \right) } i \right) \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 2 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right) \\ { z }_{ 1 }\cdot { z }_{ 2 } & =\left| { z }_{ 1 } \right| \left( \cos { \left( { \varphi }_{ 1 } \right) } +\sin { \left( { \varphi }_{ 1 } \right) } i \right) \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 2 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right) \\
& =\left| { z }_{ 1 } \right| \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 1 } \right) \cdot \cos { \left( { \varphi }_{ 2 } \right) } } +\sin { \left( { \varphi }_{ 1 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right) & =\left| { z }_{ 1 } \right| \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 1 } + { \varphi }_{ 2 } \right) } +\sin { \left( { \varphi }_{ 1 } + { \varphi }_{ 2 } \right) } i \right)
\end{align*} \end{align*}
\textbf{Division} \textbf{Division}

Loading…
Cancel
Save