Erweiterung der Sinus/Cosinus Tabelle

master
kreativmonkey 7 years ago
parent b066b87aca
commit 0d1d6a3886

Binary file not shown.

@ -37,24 +37,6 @@
\section{Allgemeines} \section{Allgemeines}
\begin{sectionbox} \begin{sectionbox}
\subsection{Bruchrechnung}\label{bruchrechnung}
\begin{itemize}
\item
\(\frac{a}{b}\) : \(\frac{c}{d}\) = Multiplikation mit Kehrwert =
\(\frac{ab}{bd}\)
\item
Brüche kürzen: nur Faktoren, nicht Summanden!
\begin{itemize}
\item
\(\frac{2}{2\ *\ 3}\) = \(\frac{2}{2}\) * \(\frac{1}{3}\) =
\(\frac{1}{3}\)
\end{itemize}
\item
Potenzen siehe „Expotentialfunktion``
\end{itemize}
\subsection{Zahlenmengen}\label{zahlenmengen} \subsection{Zahlenmengen}\label{zahlenmengen}
\begin{itemize} \begin{itemize}
@ -73,35 +55,71 @@
\subsection{Binomische Formeln}\label{binomische-formeln} \subsection{Binomische Formeln}\label{binomische-formeln}
\begin{enumerate} \begin{tablebox}{ll}
\def\labelenumi{\arabic{enumi}.} 1. Binomische Formel: & ${\left(a + b \right)}^{2} = {a}^{2} + 2ab + {b}^{2}$ \\
\item 2. Binomische Formel: & ${\left(a - b \right)}^{2} = {a}^{2} - 2ab + {b}^{2}$ \\
${(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2}$ 3. Binomische Formel: & $\left(a + b \right) \left(a - b \right) = {a}^{2} - {b}^{2}$ \\
\item Bnomischer Lehrsatz: & ${\left( a + b \right)}^{n} = \sum _{ k = 0 }^{ n }{ { a }^{ n-k }{ b }^{ k } } $ \\
${(a -- b)}^{2} = {a}^{2} - 2ab + {b}^{2}$ \end{tablebox}
\item
$(a + b) (a -- b) = {a}^{2} - {b}^{2}$ Den Binomischen Lehrsatz kannst du auch aus dem pascalschen Dreieck entnehmen.
\end{enumerate}
\subsection{Binomischer Lehrsatz}\label{binomischer-lehrsatz} \subsection{Sinus \& Cosinus}
\begin{tablebox}{c|c|c|c|c}
Bogenmaß & Grad & $\sin{x}$ & $\cos{x}$ & $\tan{x}$ \\ \hline
$0 \pi$ & $0^\circ$ & $0$ & $1$ & $0$\\ \hline
$\cfrac{1}{6} \pi$ & $30^\circ$ & $\cfrac{1}{2}$ & $\cfrac{1}{2}\sqrt{3}$ & $\cfrac{1}{\sqrt{3}}$\\ \hline
$\cfrac{1}{4} \pi$ & $45^\circ$ & $\cfrac{1}{2}\sqrt{2}$ & $\cfrac{1}{2}\sqrt{2}$ & $1$\\ \hline
$\cfrac{1}{3} \pi$ & $60^\circ$ & $\cfrac{1}{2}\sqrt{3}$ & $\cfrac{1}{2}$ & $\sqrt{3}$\\ \hline
$\cfrac{1}{2} \pi$ & $90^\circ$ & $1$ & $0$ & $\pm \infty$\\ \hline
$\cfrac{2}{3} \pi$ & $120^\circ$ & $\cfrac{1}{2}\sqrt{3}$ & $-\cfrac{1}{2}$ & $-\sqrt{3}$\\ \hline
$\cfrac{3}{4} \pi$ & $135^\circ$ & $\cfrac{1}{2}\sqrt{2}$ & $-\cfrac{1}{2}\sqrt{2}$ & $-1$\\ \hline
$\cfrac{5}{6} \pi$ & $150^\circ$ & $\cfrac{1}{2}$ & $-\cfrac{1}{2}\sqrt{3}$ & $-\cfrac{1}{\sqrt{3}}$\\ \hline
$\cfrac{1}{1} \pi$ & $180^\circ$ & $0$ & $-1$ & $0$\\ \hline
$\cfrac{7}{6} \pi$ & $210^\circ$ & $-\cfrac{1}{2}$ & $-\cfrac{1}{2}\sqrt{3}$ & $\cfrac{1}{\sqrt{3}}$\\ \hline
$\cfrac{5}{4} \pi$ & $225^\circ$ & $-\cfrac{1}{2}\sqrt{2}$ & $-\cfrac{1}{2}\sqrt{2}$ & $1$\\ \hline
$\cfrac{4}{3} \pi$ & $240^\circ$ & $-\cfrac{1}{2}\sqrt{3}$ & $-\cfrac{1}{2}$ & $\sqrt{3}$\\ \hline
$\cfrac{3}{2} \pi$ & $270^\circ$ & $-1$ & $0$ & $\pm \infty$\\ \hline
$\cfrac{5}{3} \pi$ & $300^\circ$ & $-\cfrac{1}{2}\sqrt{3}$ & $\cfrac{1}{2}$ & $-\sqrt{3}$\\ \hline
$\cfrac{7}{4} \pi$ & $315^\circ$ & $-\cfrac{1}{2}\sqrt{2}$ & $\cfrac{1}{2}\sqrt{2}$ & $-1$\\ \hline
$\cfrac{11}{6} \pi$ & $330^\circ$ & $-\cfrac{1}{2}$ & $\cfrac{1}{2}\sqrt{3}$ & $-\cfrac{1}{\sqrt{3}}$\\ \hline
\end{tablebox}
$\cfrac{1}{2}\sqrt{2} \cong 0.70710678$ und $\cfrac{1}{2}\sqrt{3} \cong 0.8660254$ \\ sowie $\cfrac{1}{\sqrt{3}} \cong 0577350269$
\subsection{Bruchrechnung}\label{bruchrechnung}
\begin{itemize} \begin{itemize}
\item \item
\({(a + b)}^{n}\) = \(\sum_{k = 0}^{n}{a^{n - k}b^{k}}\) \(\frac{a}{b}\) : \(\frac{c}{d}\) = Multiplikation mit Kehrwert =
\(\frac{ab}{bd}\)
\item \item
z.b.: 1 \(\bullet\) \(a^{5} \bullet\) \(b^{0}\) + \ldots{} Brüche kürzen: nur Faktoren, nicht Summanden!
\end{itemize}
\subsection{Sinus \& Cosinus} \begin{itemize}
\begin{tablebox}{l|l} \item
$\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\ \(\frac{2}{2\ *\ 3}\) = \(\frac{2}{2}\) * \(\frac{1}{3}\) =
$\cos 30^\circ = \cfrac{1}{2}\sqrt{3} \cong 0.8660254$ & $\sin 30^\circ = \cfrac{1}{2}$ \\ \(\frac{1}{3}\)
$\cos 45^\circ = \cfrac{1}{2}\sqrt{2} \cong 0.70710678$ & $\sin 45^\circ = \cfrac{1}{\sqrt{2}} \cong 0.70710678$ \\ \end{itemize}
$\cos 90^\circ = 0$ & $\sin 90^\circ = 1$ \\ \end{itemize}
\end{tablebox}
\end{sectionbox} \end{sectionbox}
% Weiterführend Allgemeines
% ----------------------------------------------------------------------
\begin{sectionbox}
\subsection{Potenzrechnung}
\begin{tablebox}{ll}
${a}^{n} \cdot {a}^{m} = {a}^{n+m}$ & $\frac{ {a}^{n} }{ {a}^{m} } = {a}^{n-m}$ \\
${\left({a}^{m}\right)}^{n} = {\left({a}^{n}\right)}^{m} = {a}^{m \cdot n}$ & ${a}^{n} \cdot {b}^{n} = {\left(a \cdot b \right)}^{n}$ \\
$\frac{{a}^{n}}{{b}^{n}} = {\left(\cfrac{a}{b}\right)}^{n}$ & ${-a}^{-1} = \cfrac{-1}{a} = \cfrac{{a}^{-1}}{-1}$\\
${e}^{lnx} = x$ & ${a}^{-n} = \frac{1}{ {a}^{n} } $
\end{tablebox}
\subsection{Wurzelrechnung}
\end{sectionbox}
% Mengenlehre % Mengenlehre
% ---------------------------------------------------------------------- % ----------------------------------------------------------------------

Loading…
Cancel
Save