|
|
|
@ -43,14 +43,13 @@
|
|
|
|
|
\item
|
|
|
|
|
$\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
|
|
|
|
|
\item
|
|
|
|
|
Z = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
|
|
|
|
|
$\mathbb{Z}$ = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
|
|
|
|
|
\item
|
|
|
|
|
Q = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in\) Z)
|
|
|
|
|
$\mathbb{Q}$ = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in \mathbb{Z}\), q \(\neq\) 0)
|
|
|
|
|
\item
|
|
|
|
|
R = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
|
|
|
|
|
$\mathbb{R}$ = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
|
|
|
|
|
\item
|
|
|
|
|
C = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b
|
|
|
|
|
\(\in\) R\}
|
|
|
|
|
$\mathbb{C}$ = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b \(\in \mathbb{R}\) \}
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\subsection{Binomische Formeln}\label{binomische-formeln}
|
|
|
|
|