nicer table

master
Sebastian Preisner 8 years ago
parent f95e96a94b
commit ce92f44249

Binary file not shown.

@ -166,8 +166,8 @@
\begin{sectionbox} \begin{sectionbox}
\begin{tablebox}{lll} \begin{tablebox}{l|l|l}
\textbf{x,y} & \textbf{(in Grad)} & \textbf{(im Bogenmaß)} \\ \textbf{x,y} & \textbf{(in Grad)} & \textbf{(im Bogenmaß)} \\ \hline
$x > 0, y \ge 0$ & $\varphi = \arctan \cfrac{y}{x} $ & $\varphi = arctan \cfrac{y}{x}$ \\ $x > 0, y \ge 0$ & $\varphi = \arctan \cfrac{y}{x} $ & $\varphi = arctan \cfrac{y}{x}$ \\
$x < 0$ & $\varphi = \arctan \cfrac{y}{x} + 180^\circ $ & $\varphi = arctan \cfrac{y}{x} + \pi $ \\ $x < 0$ & $\varphi = \arctan \cfrac{y}{x} + 180^\circ $ & $\varphi = arctan \cfrac{y}{x} + \pi $ \\
$x > 0, y \le 0 $ & $\varphi = \arctan \cfrac{y}{x} + 360^\circ $ & $\varphi = \arctan \cfrac{y}{x} + 2\pi $ \\ $x > 0, y \le 0 $ & $\varphi = \arctan \cfrac{y}{x} + 360^\circ $ & $\varphi = \arctan \cfrac{y}{x} + 2\pi $ \\
@ -176,6 +176,8 @@ $x = 0, y < 0 $ & $\varphi = 270^\circ $ & $\varphi = \cfrac{3}{2}\pi
$x = 0, y = 0 $ & $\varphi = 0^\circ $ & $\varphi = 0 $ \\ $x = 0, y = 0 $ & $\varphi = 0^\circ $ & $\varphi = 0 $ \\
\end{tablebox} \end{tablebox}
\subsection{Formen} \subsection{Formen}
\textbf{Kartesische Form:} \textbf{Kartesische Form:}
\begin{align*} \begin{align*}
@ -246,7 +248,7 @@ Es gibt immer $n$ Ergebnisse die in ${ z }_{ k } $ für $k= 0$ bis $k= n-1$ bere
\begin{sectionbox} \begin{sectionbox}
\subsection{Sinus \& Cosinus} \subsection{Sinus \& Cosinus}
\begin{tablebox}{ll} \begin{tablebox}{l|l}
$\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\ $\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\
$\cos 30^\circ = \cfrac{1}{2}\sqrt{3} \cong 0.8660254$ & $\sin 30^\circ = \cfrac{1}{2}$ \\ $\cos 30^\circ = \cfrac{1}{2}\sqrt{3} \cong 0.8660254$ & $\sin 30^\circ = \cfrac{1}{2}$ \\
$\cos 45^\circ = \cfrac{1}{2}\sqrt{2} \cong 0.70710678$ & $\sin 45^\circ = \cfrac{1}{\sqrt{2}} \cong 0.70710678$ \\ $\cos 45^\circ = \cfrac{1}{2}\sqrt{2} \cong 0.70710678$ & $\sin 45^\circ = \cfrac{1}{\sqrt{2}} \cong 0.70710678$ \\

Loading…
Cancel
Save