Ablauf für Limes gegen a

master
kreativmonkey 7 years ago
parent 79a6b078b7
commit 9f034d8136

Binary file not shown.

@ -661,7 +661,14 @@ $\frac{1}{1} = 1 $ & $\frac{1}{0} = \infty $ & $\frac{0}{1} = 0 $ & $\frac{1}{17
&\lim\limits_{x \rightarrow 1}{ \frac{ {x}^{3} - 6{x}^{2} + 5x }{ 2{x}^{2} + 32x - 34 } } = \lim\limits_{x \rightarrow 1}{ \frac{ {x} \left( x - 1 \right) \left( x - 5 \right) }{ 2 \left( x -1 \right) \left( x + 17 \right) } } \\ &\lim\limits_{x \rightarrow 1}{ \frac{ {x}^{3} - 6{x}^{2} + 5x }{ 2{x}^{2} + 32x - 34 } } = \lim\limits_{x \rightarrow 1}{ \frac{ {x} \left( x - 1 \right) \left( x - 5 \right) }{ 2 \left( x -1 \right) \left( x + 17 \right) } } \\
= &\lim\limits_{x \rightarrow 1}{ \frac{ x \left(x-5 \right) }{ 2 \left(x+17 \right) } } = \frac{-4}{36} = -\frac{1}{9} = &\lim\limits_{x \rightarrow 1}{ \frac{ x \left(x-5 \right) }{ 2 \left(x+17 \right) } } = \frac{-4}{36} = -\frac{1}{9}
\end{align*} \end{align*}
\begin{cookbox}{Ablauf bei $\lim\limits_{n \rightarrow a}$}
\item Schauen ob man etwas ausklammern kann oder muss
\item Anwendung der p-q Formel um die Nullstellen zu berechnen
\item Sind die Nullstellen ${x}_{1} = -4$ und ${x}_{2} = 5$ dann ist die Auflösung der Binomischen Formel $\left(x + 4 \right) \left( x - 5 \right)$
\item Binomische Formel zur Kontrolle ausmultiplizieren
\item Nun im Zähler und Nenner kürzen
\item Danach wird $a$ eingesetzt und das Ergebnis ist der Grenzwert.
\end{cookbox}
\end{sectionbox} \end{sectionbox}

Loading…
Cancel
Save