|
|
|
@ -806,53 +806,7 @@ $\frac{1}{1} = 1 $ & $\frac{1}{0} = \infty $ & $\frac{0}{1} = 0 $ & $\frac{1}{17
|
|
|
|
|
\end{minipage}
|
|
|
|
|
\end{sectionbox}
|
|
|
|
|
|
|
|
|
|
\begin{sectionbox}
|
|
|
|
|
|
|
|
|
|
\subsection{Winkelfunktionen}
|
|
|
|
|
\begin{minipage}{0.48\textwidth}
|
|
|
|
|
\begin{tablebox}{|l|l|}
|
|
|
|
|
\hline
|
|
|
|
|
Funktion & Ableitung \\ \hline
|
|
|
|
|
$ \sin{x} $ & $ \cos{x} $ \\ \hline
|
|
|
|
|
$ \cos{x} $ & $ - \sin{x} $ \\ \hline
|
|
|
|
|
$ \tan{x} $ & $ \frac{ 1 }{ \cos^{2}{x} }$ \\ \hline
|
|
|
|
|
$ \cot{x} $ & $ - \frac{ 1 }{ \sin^{2}{x} }$ \\ \hline
|
|
|
|
|
\end{tablebox}
|
|
|
|
|
\end{minipage}
|
|
|
|
|
\begin{minipage}{0.49\textwidth}
|
|
|
|
|
\begin{tablebox}{|l|l|}
|
|
|
|
|
\hline
|
|
|
|
|
Funktion & Ableitung \\ \hline
|
|
|
|
|
$ \arcsin{x} $ & $ \frac{ 1 }{ \sqrt{ 1-x^2 } }$ \\ \hline
|
|
|
|
|
$ \arccos{x} $ & $ \frac{ 1 }{ \sqrt{ 1 - x^2 } }$ \\ \hline
|
|
|
|
|
$ \arctan{x} $ & $ \frac{ 1 }{ 1 + x^2 }$ \\ \hline
|
|
|
|
|
$ \arccot{x} $ & $ - \frac{ 1 } { 1 + x^2 } $ \\ \hline
|
|
|
|
|
\end{tablebox}
|
|
|
|
|
\end{minipage}
|
|
|
|
|
|
|
|
|
|
\begin{minipage}{0.48\textwidth}
|
|
|
|
|
\begin{tablebox}{|l|l|}
|
|
|
|
|
\hline
|
|
|
|
|
Funktion & Ableitung \\ \hline
|
|
|
|
|
$ \sinh{x} $ & $ \cosh{x} $ \\ \hline
|
|
|
|
|
$ \cosh{x} $ & $ \sinh{x} $ \\ \hline
|
|
|
|
|
$ \tanh{x} $ & $ \frac{ 1 }{ \cosh^{2}{x} }$ \\ \hline
|
|
|
|
|
$ \coth{x} $ & $ - \frac{ 1 }{ \sinh^{2}{x} }$ \\ \hline
|
|
|
|
|
\end{tablebox}
|
|
|
|
|
\end{minipage}
|
|
|
|
|
\begin{minipage}{0.49\textwidth}
|
|
|
|
|
\begin{tablebox}{|l|l|}
|
|
|
|
|
\hline
|
|
|
|
|
Funktion & Ableitung \\ \hline
|
|
|
|
|
$ \arcsinh{x} $ & $ \frac{ 1 }{ \sqrt{ 1 + x^2 } }$ \\ \hline
|
|
|
|
|
$ \arccosh{x} $ & $ \frac{ 1 }{ \sqrt{ x^2 - 1 } }$ \\ \hline
|
|
|
|
|
$ \arctanh{x} $ & $ \frac{ 1 }{ 1 - x^2 }$ \\ \hline
|
|
|
|
|
$ \arccoth{x} $ & $ - \frac{ 1 } { 1 - x^2 } $ \\ \hline
|
|
|
|
|
\end{tablebox}
|
|
|
|
|
\end{minipage}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end{sectionbox}
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|