|
|
@ -43,14 +43,13 @@
|
|
|
|
\item
|
|
|
|
\item
|
|
|
|
$\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
|
|
|
|
$\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
|
|
|
|
\item
|
|
|
|
\item
|
|
|
|
Z = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
|
|
|
|
$\mathbb{Z}$ = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
|
|
|
|
\item
|
|
|
|
\item
|
|
|
|
Q = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in\) Z)
|
|
|
|
$\mathbb{Q}$ = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in \mathbb{Z}\), q \(\neq\) 0)
|
|
|
|
\item
|
|
|
|
\item
|
|
|
|
R = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
|
|
|
|
$\mathbb{R}$ = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
|
|
|
|
\item
|
|
|
|
\item
|
|
|
|
C = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b
|
|
|
|
$\mathbb{C}$ = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b \(\in \mathbb{R}\) \}
|
|
|
|
\(\in\) R\}
|
|
|
|
|
|
|
|
\end{itemize}
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Binomische Formeln}\label{binomische-formeln}
|
|
|
|
\subsection{Binomische Formeln}\label{binomische-formeln}
|
|
|
@ -449,7 +448,7 @@ $a = 0, b = 0 $ & $\varphi = 0^\circ $ & $\varphi = 0 $ \\
|
|
|
|
\end{align*}
|
|
|
|
\end{align*}
|
|
|
|
\begin{align*}
|
|
|
|
\begin{align*}
|
|
|
|
{ z }_{ 1 }\cdot { z }_{ 2 } & =\left| { z }_{ 1 } \right| \left( \cos { \left( { \varphi }_{ 1 } \right) } +\sin { \left( { \varphi }_{ 1 } \right) } i \right) \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 2 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right) \\
|
|
|
|
{ z }_{ 1 }\cdot { z }_{ 2 } & =\left| { z }_{ 1 } \right| \left( \cos { \left( { \varphi }_{ 1 } \right) } +\sin { \left( { \varphi }_{ 1 } \right) } i \right) \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 2 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right) \\
|
|
|
|
& =\left| { z }_{ 1 } \right| \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 1 } \right) \cdot \cos { \left( { \varphi }_{ 2 } \right) } } +\sin { \left( { \varphi }_{ 1 } \right) } \cdot \sin { \left( { \varphi }_{ 2 } \right) } i \right)
|
|
|
|
& =\left| { z }_{ 1 } \right| \cdot \left| { z }_{ 2 } \right| \left( \cos { \left( { \varphi }_{ 1 } + { \varphi }_{ 2 } \right) } +\sin { \left( { \varphi }_{ 1 } + { \varphi }_{ 2 } \right) } i \right)
|
|
|
|
\end{align*}
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
|
|
\textbf{Division}
|
|
|
|
\textbf{Division}
|
|
|
|