|
|
|
@ -38,6 +38,60 @@
|
|
|
|
|
|
|
|
|
|
\begin{sectionbox}
|
|
|
|
|
|
|
|
|
|
\subsection{Bruchrechnung}\label{bruchrechnung}
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item
|
|
|
|
|
\(\frac{a}{b}\) : \(\frac{c}{d}\) = Multiplikation mit Kehrwert =
|
|
|
|
|
\(\frac{ab}{bd}\)
|
|
|
|
|
\item
|
|
|
|
|
Brüche kürzen: nur Faktoren, nicht Summanden!
|
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item
|
|
|
|
|
\(\frac{2}{2\ *\ 3}\) = \(\frac{2}{2}\) * \(\frac{1}{3}\) =
|
|
|
|
|
\(\frac{1}{3}\)
|
|
|
|
|
\end{itemize}
|
|
|
|
|
\item
|
|
|
|
|
Potenzen siehe „Expotentialfunktion``
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\subsection{Zahlenmengen}\label{zahlenmengen}
|
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item
|
|
|
|
|
$\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
|
|
|
|
|
\item
|
|
|
|
|
Z = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
|
|
|
|
|
\item
|
|
|
|
|
Q = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in\) Z)
|
|
|
|
|
\item
|
|
|
|
|
R = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
|
|
|
|
|
\item
|
|
|
|
|
C = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b
|
|
|
|
|
\(\in\) R\}
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\subsection{Binomische Formeln}\label{binomische-formeln}
|
|
|
|
|
|
|
|
|
|
\begin{enumerate}
|
|
|
|
|
\def\labelenumi{\arabic{enumi}.}
|
|
|
|
|
\item
|
|
|
|
|
${(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2}$
|
|
|
|
|
\item
|
|
|
|
|
${(a -- b)}^{2} = {a}^{2} - 2ab + {b}^{2}$
|
|
|
|
|
\item
|
|
|
|
|
$(a + b) (a -- b) = {a}^{2} - {b}^{2}$
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
|
|
\subsection{Binomischer Lehrsatz}\label{binomischer-lehrsatz}
|
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item
|
|
|
|
|
\({(a + b)}^{n}\) = \(\sum_{k = 0}^{n}{a^{n - k}b^{k}}\)
|
|
|
|
|
\item
|
|
|
|
|
z.b.: 1 \(\bullet\) \(a^{5} \bullet\) \(b^{0}\) + \ldots{}
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\subsection{Sinus \& Cosinus}
|
|
|
|
|
\begin{tablebox}{l|l}
|
|
|
|
|
$\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\
|
|
|
|
|