| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -38,6 +38,60 @@
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\begin{sectionbox}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\subsection{Bruchrechnung}\label{bruchrechnung}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\begin{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \(\frac{a}{b}\) : \(\frac{c}{d}\) = Multiplikation mit Kehrwert =
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \(\frac{ab}{bd}\)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  Brüche kürzen: nur Faktoren, nicht Summanden!
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \begin{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    \(\frac{2}{2\ *\ 3}\) = \(\frac{2}{2}\) * \(\frac{1}{3}\) =
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    \(\frac{1}{3}\)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \end{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  Potenzen siehe „Expotentialfunktion``
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\end{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\subsection{Zahlenmengen}\label{zahlenmengen}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\begin{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  $\mathbb{N}$ = natürliche Zahlen = \{1, 2, 3, \ldots{}\}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  Z = ganze Zahlen = \{\ldots{}, -1, 0, 1, 2, \ldots{}\}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  Q = rationale Zahlen, z.b. \(\frac{p}{q}\) (p, q \(\in\) Z)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  R = reelle Zahlen, „alle Zahlen``, z.b. \(\pi\)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  C = komplexe Zahlen = \{a + ib \textbar{} i = \(\sqrt{- 1}\), a,b
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \(\in\) R\}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\end{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\subsection{Binomische Formeln}\label{binomische-formeln}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\begin{enumerate}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\def\labelenumi{\arabic{enumi}.}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  ${(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2}$
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  ${(a -- b)}^{2} = {a}^{2} - 2ab + {b}^{2}$
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  $(a + b) (a -- b) = {a}^{2} - {b}^{2}$
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\end{enumerate}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\subsection{Binomischer Lehrsatz}\label{binomischer-lehrsatz}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\begin{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  \({(a + b)}^{n}\) = \(\sum_{k = 0}^{n}{a^{n - k}b^{k}}\)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\item
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  z.b.: 1 \(\bullet\) \(a^{5} \bullet\) \(b^{0}\) + \ldots{}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\end{itemize}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\subsection{Sinus \& Cosinus}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				\begin{tablebox}{l|l}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
						$\cos 0^\circ = 1$ & $\sin 0^\circ = 0$ \\
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
			
			 | 
			 | 
			
				
 
 |